Total Domination on Tree Operators

被引:3
|
作者
Bermudo, Sergio [1 ]
机构
[1] Univ Pablo de Olavide, Dept Econ Quantitat Methods & Econ Hist, Carretera Utrera Km 1, Seville 41013, Spain
关键词
Total domination; graph operation; POLYNOMIALS;
D O I
10.1007/s00009-022-02236-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V and edge set E, a set D subset of V is a total dominating set if every vertex v is an element of V has at least one neighbor in D. The minimum cardinality among all total dominating sets is called the total domination number, and it is denoted by gamma t(G).Given an arbitrary tree graph T, we consider some operators acting on this graph; S(T),R(T),Q(T) and T(T), and we give bounds of the total domination number of these new graphs using other parameters in the graph T. We also give the exact value of the total domination number in some of them.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Total Domination on Tree Operators
    Sergio Bermudo
    Mediterranean Journal of Mathematics, 2023, 20
  • [2] Total Domination on Some Graph Operators
    Sigarreta, Jose M.
    MATHEMATICS, 2021, 9 (03) : 1 - 9
  • [3] BOUNDS ON THE DISJUNCTIVE TOTAL DOMINATION NUMBER OF A TREE
    Henning, Michael A.
    Naicker, Viroshan
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2016, 36 (01) : 153 - 171
  • [4] A New Lower Bound on the Total Domination Number of a Tree
    Desormeaux, Wyatt J.
    Henning, Michael A.
    ARS COMBINATORIA, 2018, 138 : 305 - 322
  • [5] Relating the annihilation number and the total domination number of a tree
    Desormeaux, Wyatt J.
    Haynes, Teresa W.
    Henning, Michael A.
    DISCRETE APPLIED MATHEMATICS, 2013, 161 (03) : 349 - 354
  • [6] AN UPPER BOUND ON THE TOTAL OUTER-INDEPENDENT DOMINATION NUMBER OF A TREE
    Krzywkowski, Malvin
    OPUSCULA MATHEMATICA, 2012, 32 (01) : 153 - 158
  • [7] A note on domination and total domination in prisms
    Goddard, Wayne
    Henning, Michael A.
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 35 (01) : 14 - 20
  • [8] TOTAL DOMINATION VERSUS PAIRED DOMINATION
    Schaudt, Oliver
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2012, 32 (03) : 435 - 447
  • [9] A note on domination and total domination in prisms
    Wayne Goddard
    Michael A. Henning
    Journal of Combinatorial Optimization, 2018, 35 : 14 - 20
  • [10] Domination and total domination in complementary prisms
    Teresa W. Haynes
    Michael A. Henning
    Lucas C. van der Merwe
    Journal of Combinatorial Optimization, 2009, 18 : 23 - 37