Generalized linear mixed model with bayesian rank likelihood

被引:0
|
作者
Doroshenko, Lyubov [1 ]
Liseo, Brunero [2 ]
机构
[1] Sapienza Univ Roma, Sch Econ, Via Castro Laurenziano 9, I-00161 Rome, Italy
[2] Sapienza Univ Roma, MEMOTEF Dept, Via Castro Laurenziano 9, I-00161 Rome, Italy
基金
欧盟地平线“2020”;
关键词
Ordinal data; Latent variables; Missing data; Gibbs sampler; Longitudinal data; Ratings; INFERENCE;
D O I
10.1007/s10260-022-00657-y
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider situations where a model for an ordered categorical response variable is deemed necessary. Standard models may not be suited to perform this analysis, being that the marginal probability effects to a large extent are predetermined by the rigid parametric structure. We propose to use a rank likelihood approach in a non Gaussian framework and show how additional flexibility can be gained by modeling individual heterogeneity in terms of latent structure. This approach avoids to set a specific link between the observed categories and the latent quantities and it is discussed in the broadly general case of longitudinal data. A real data example is illustrated in the context of sovereign credit ratings modeling and forecasting.
引用
收藏
页码:425 / 446
页数:22
相关论文
共 50 条
  • [41] A multinomial generalized linear mixed model for clustered competing risks data
    Laureano, Henrique Aparecido
    Petterle, Ricardo Rasmussen
    da Silva, Guilherme Parreira
    Ribeiro Junior, Paulo Justiniano
    Bonat, Wagner Hugo
    COMPUTATIONAL STATISTICS, 2024, 39 (03) : 1417 - 1434
  • [42] Empirical Likelihood for Generalized Linear Models with Longitudinal Data
    Yin, Changming
    Ai, Mingyao
    Chen, Xia
    Kong, Xiangshun
    JOURNAL OF SYSTEMS SCIENCE & COMPLEXITY, 2023, 36 (05) : 2100 - 2124
  • [43] Empirical Likelihood for Generalized Linear Models with Longitudinal Data
    Changming Yin
    Mingyao Ai
    Xia Chen
    Xiangshun Kong
    Journal of Systems Science and Complexity, 2023, 36 : 2100 - 2124
  • [44] Empirical likelihood for generalized linear models with longitudinal data
    Li, Daoji
    Pan, Jianxin
    JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 114 : 63 - 73
  • [45] A Bayesian approach to inequality constrained linear mixed models: estimation and model selection
    Kato, Bernet S.
    Hoijtink, Herbert
    STATISTICAL MODELLING, 2006, 6 (03) : 231 - 249
  • [46] Safe-Bayesian Generalized Linear Regression
    de Heide, Rianne
    Kirichenko, Alisa
    Mehta, Nishant A.
    Grunwald, Peter D.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 108, 2020, 108 : 2623 - 2632
  • [47] Bayesian estimation in generalized linear models for longitudinal data with hyperspherical coordinates
    Geng, Shuli
    Zhang, Lixin
    STATISTICS, 2024, 58 (02) : 302 - 315
  • [48] Bayesian crossover designs for generalized linear models
    Singh, Satya Prakash
    Mukhopadhyay, Siuli
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 104 : 35 - 50
  • [49] Bayesian recursive mixed linear model for gene expression analyses with continuous covariates
    Casellas, J.
    Ibanez-Escriche, N.
    JOURNAL OF ANIMAL SCIENCE, 2012, 90 (01) : 67 - 75
  • [50] Maximum Likelihood for Gaussian Process Classification and Generalized Linear Mixed Models under Case-Control Sampling
    Weissbrod, Omer
    Kaufman, Shachar
    Golan, David
    Rosset, Saharon
    JOURNAL OF MACHINE LEARNING RESEARCH, 2019, 20