The role of competing endogenous RNA network in the development of hepatocellular carcinoma: potential therapeutic targets

被引:18
作者
Tang, Ziwei [1 ]
Li, Xue [2 ]
Zheng, Yanfeng [2 ,3 ]
Liu, Jin [2 ]
Liu, Chao [4 ]
Li, Xia [2 ]
机构
[1] Ninth Peoples Hosp Chongqing, Chongqing, Peoples R China
[2] Chengdu Univ Tradit Chinese Med, Sch Basic Med Sci, Chengdu, Peoples R China
[3] Chongqing Med & Pharmaceut Coll, Chongqing, Peoples R China
[4] Chongqing Chem Ind Vocat Coll, Chongqing, Peoples R China
基金
中国博士后科学基金;
关键词
hepatocellular carcinoma; competing endogenous RNA; traditional Chinese medicine; progress; therapy; LONG NONCODING RNA; SORAFENIB RESISTANCE; CELL-PROLIFERATION; COMPREHENSIVE ANALYSIS; MESSENGER-RNAS; CERNA NETWORK; UP-REGULATION; CANCER CELLS; AUTOPHAGY; PROMOTES;
D O I
10.3389/fcell.2024.1341999
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The current situation of hepatocellular carcinoma (HCC) management is challenging due to its high incidence, mortality, recurrence and metastasis. Recent advances in gene genetic and expression regulation have unveiled the significant role of non-coding RNA (ncRNA) in various cancers. This led to the formulation of the competing endogenous RNA (ceRNA) hypothesis, which posits that both coding RNA and ncRNA, containing miRNA response elements (MRE), can share the same miRNA sequence. This results in a competitive network between ncRNAs, such as lncRNA and mRNA, allowing them to regulate each other. Extensive research has highlighted the crucial role of the ceRNA network in HCC development, impacting various cellular processes including proliferation, metastasis, cell death, angiogenesis, tumor microenvironment, organismal immunity, and chemotherapy resistance. Additionally, the ceRNA network, mediated by lncRNA or circRNA, offers potential in early diagnosis and prevention of HCC. Consequently, ceRNAs are emerging as therapeutic targets for HCC. The complexity of these gene networks aligns with the multi-target approach of traditional Chinese medicine (TCM), presenting a novel perspective for TCM in combating HCC. Research is beginning to show that TCM compounds and prescriptions can affect HCC progression through the ceRNA network, inhibiting proliferation and metastasis, and inducing apoptosis. Currently, the lncRNAs TUG1, NEAT1, and CCAT1, along with their associated ceRNA networks, are among the most promising ncRNAs for HCC research. However, this field is still in its infancy, necessitating advanced technology and extensive basic research to fully understand the ceRNA network mechanisms of TCM in HCC treatment.
引用
收藏
页数:18
相关论文
共 193 条
[1]   The role and function of long non-coding RNAs in osteoarthritis [J].
Abbasifard, Mitra ;
Kamiab, Zahra ;
Bagheri-Hosseinabadi, Zahra ;
Sadeghi, Iman .
EXPERIMENTAL AND MOLECULAR PATHOLOGY, 2020, 114
[2]  
Abulizi Rena, 2019, Oncol Res, DOI 10.3727/096504019X15740729375088
[3]   Our genome unveiled [J].
Baltimore, D .
NATURE, 2001, 409 (6822) :814-816
[4]   LncRNA DBH-AS1 facilitates the tumorigenesis of hepatocellular carcinoma by targeting miR-138 via FAK/Src/ERK pathway [J].
Bao, Jie ;
Chen, Xiaoqi ;
Hou, Yuge ;
Kang, Gailing ;
Li, Qiaoli ;
Xu, Yun .
BIOMEDICINE & PHARMACOTHERAPY, 2018, 107 :824-833
[5]   Pseudogene PLGLA exerts anti-tumor effects on hepatocellular carcinoma through modulating miR-324-3p/GLYATL1 axis [J].
Bao, Le ;
Li, Pengfei ;
Zhao, Hongying ;
Chen, Long ;
Wang, Youbin ;
Liang, Shuang ;
Liu, Jian .
DIGESTIVE AND LIVER DISEASE, 2022, 54 (07) :918-926
[6]   Metazoan MicroRNAs [J].
Bartel, David P. .
CELL, 2018, 173 (01) :20-51
[7]   MicroRNAs: Target Recognition and Regulatory Functions [J].
Bartel, David P. .
CELL, 2009, 136 (02) :215-233
[8]   MicroRNAs: Genomics, biogenesis, mechanism, and function (Reprinted from Cell, vol 116, pg 281-297, 2004) [J].
Bartel, David P. .
CELL, 2007, 131 (04) :11-29
[9]   The landscape of somatic copy-number alteration across human cancers [J].
Beroukhim, Rameen ;
Mermel, Craig H. ;
Porter, Dale ;
Wei, Guo ;
Raychaudhuri, Soumya ;
Donovan, Jerry ;
Barretina, Jordi ;
Boehm, Jesse S. ;
Dobson, Jennifer ;
Urashima, Mitsuyoshi ;
Mc Henry, Kevin T. ;
Pinchback, Reid M. ;
Ligon, Azra H. ;
Cho, Yoon-Jae ;
Haery, Leila ;
Greulich, Heidi ;
Reich, Michael ;
Winckler, Wendy ;
Lawrence, Michael S. ;
Weir, Barbara A. ;
Tanaka, Kumiko E. ;
Chiang, Derek Y. ;
Bass, Adam J. ;
Loo, Alice ;
Hoffman, Carter ;
Prensner, John ;
Liefeld, Ted ;
Gao, Qing ;
Yecies, Derek ;
Signoretti, Sabina ;
Maher, Elizabeth ;
Kaye, Frederic J. ;
Sasaki, Hidefumi ;
Tepper, Joel E. ;
Fletcher, Jonathan A. ;
Tabernero, Josep ;
Baselga, Jose ;
Tsao, Ming-Sound ;
Demichelis, Francesca ;
Rubin, Mark A. ;
Janne, Pasi A. ;
Daly, Mark J. ;
Nucera, Carmelo ;
Levine, Ross L. ;
Ebert, Benjamin L. ;
Gabriel, Stacey ;
Rustgi, Anil K. ;
Antonescu, Cristina R. ;
Ladanyi, Marc ;
Letai, Anthony .
NATURE, 2010, 463 (7283) :899-905
[10]   Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project [J].
Birney, Ewan ;
Stamatoyannopoulos, John A. ;
Dutta, Anindya ;
Guigo, Roderic ;
Gingeras, Thomas R. ;
Margulies, Elliott H. ;
Weng, Zhiping ;
Snyder, Michael ;
Dermitzakis, Emmanouil T. ;
Stamatoyannopoulos, John A. ;
Thurman, Robert E. ;
Kuehn, Michael S. ;
Taylor, Christopher M. ;
Neph, Shane ;
Koch, Christoph M. ;
Asthana, Saurabh ;
Malhotra, Ankit ;
Adzhubei, Ivan ;
Greenbaum, Jason A. ;
Andrews, Robert M. ;
Flicek, Paul ;
Boyle, Patrick J. ;
Cao, Hua ;
Carter, Nigel P. ;
Clelland, Gayle K. ;
Davis, Sean ;
Day, Nathan ;
Dhami, Pawandeep ;
Dillon, Shane C. ;
Dorschner, Michael O. ;
Fiegler, Heike ;
Giresi, Paul G. ;
Goldy, Jeff ;
Hawrylycz, Michael ;
Haydock, Andrew ;
Humbert, Richard ;
James, Keith D. ;
Johnson, Brett E. ;
Johnson, Ericka M. ;
Frum, Tristan T. ;
Rosenzweig, Elizabeth R. ;
Karnani, Neerja ;
Lee, Kirsten ;
Lefebvre, Gregory C. ;
Navas, Patrick A. ;
Neri, Fidencio ;
Parker, Stephen C. J. ;
Sabo, Peter J. ;
Sandstrom, Richard ;
Shafer, Anthony .
NATURE, 2007, 447 (7146) :799-816