Design, fabrication, and characterization of a drift tube linac type double gap re-buncher cavity

被引:2
作者
Mathew, Jose V. [1 ]
Priyadarshini, Pallavi [1 ]
Sista, Vyaghri L. Srao [1 ]
机构
[1] BARC, Ion Accelerator Dev Div, Mumbai 400085, India
关键词
ACCELERATOR; REBUNCHER; INJECTOR;
D O I
10.1063/5.0175648
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The Low Energy High Intensity Proton Accelerator (LEHIPA) at Bhabha Atomic Research Centre, India, has recently been commissioned to the target energy of 20 MeV by beam acceleration through a 352 MHz radio frequency quadrupole (RFQ) and drift tube linac (DTL). The medium energy beam transport (MEBT) line of LEHIPA matches the 3 MeV beam from RFQ to the DTL using four electromagnetic quadrupoles and a re-buncher cavity. In the beam transport lines of high frequency linacs, TM010 mode single gap buncher cavities are conventionally used, while a double gap re-buncher cavity was chosen for the short length LEHIPA MEBT based on beam dynamics simulations. The 352 MHz double gap re-buncher cavity has been designed in a DTL type geometry with a cell length of beta lambda. This double gap cavity is found to be more power efficient with a higher shunt impedance and transit time factor than the conventional single gap buncher cavity. Electromagnetic design simulations, fabrication details, low power and high-power RF test results, and beam test results of the re-buncher cavity are presented in this paper.
引用
收藏
页数:10
相关论文
共 30 条
  • [1] 3ds, About Us
  • [2] Agashe A., 2022, P INPAC 2022, pID
  • [3] Billen J. H., 2002, Rep., LA-UR-96-1834
  • [4] Byrd J., 2013, Microwave Measurements Laboratory for Accelerators, Lecture Material
  • [5] De Michele G., 2012, CERN-ATS-Note-2012-003 TECH
  • [6] The European Spallation Source Design (vol 93, 014001, 2018)
    Garoby, Roland
    Vergara, A.
    Danared, H.
    Alonso, I.
    Bargallo, E.
    Cheymol, B.
    Darve, C.
    Eshraqi, M.
    Hassanzadegan, H.
    Jansson, A.
    Kittelmann, I.
    Levinsen, Y.
    Lindroos, M.
    Martins, C.
    Midttun, O.
    Miyamoto, R.
    Molloy, S.
    Phan, D.
    Ponton, A.
    Sargsyan, E.
    Shea, T.
    Sunesson, A.
    Tchelidze, L.
    Thomas, C.
    Jensen, M.
    Hees, W.
    Arnold, P.
    Juni-Ferreira, M.
    Jensen, F.
    Lundmark, A.
    Gazis, N.
    Weisend, J., II
    Anthony, M.
    Pitcher, E.
    Coney, L.
    Gohran, M.
    Haines, J.
    Linander, R.
    Lyngh, D.
    Oden, U.
    Carling, H.
    Andersson, R.
    Birch, S.
    Cereijo, J.
    Friedrich, T.
    Korhonen, T.
    Laface, E.
    Mansouri-Sharifabad, M.
    Monera-Martinez, A.
    Nordt, A.
    [J]. PHYSICA SCRIPTA, 2018, 93 (12)
  • [7] Guillaume J., 2015, CERN-STUDENTS-Note-2015-044
  • [8] Design and RF test of MEBT buncher cavities for C-ADS Injector II at IMP
    Huang, Shichun
    Jia, Huan
    Niu, Haihua
    He, Yuan
    Zhang, Shenghu
    Yuan, Chenzhang
    Wang, Jing
    Zhang, Shengxue
    Chang, Wei
    Zhang, Peng
    Zhao, Hongwei
    Xia, Jiawen
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2015, 799 : 44 - 49
  • [9] Study and development of CW room temperature rebuncher for SARAF accelerator
    Kaizer, B.
    Rodnizki, J.
    Farber, E.
    Perry, A.
    Danon, L.
    Horvitz, Z.
    Mazor, O.
    Friedman, A.
    Di Giacomo, M.
    Leyge, J. -F.
    Michel, M.
    Toussaint, P.
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2017, 871 : 161 - 168
  • [10] Design and simulations of the HEBT spiral buncher cavities for the high current injector at IUAC
    Kedia, Sanjay Kumar
    Mehta, Rajeev
    Ahuja, Rajeev
    [J]. VACUUM, 2021, 192