META-EEG: Meta-learning-based class-relevant EEG representation learning for zero-calibration brain-computer interfaces

被引:5
作者
Han, Ji-Wung [1 ]
Bak, Soyeon [1 ]
Kim, Jun-Mo [1 ]
Choi, Woohyeok [1 ]
Shin, Dong-Hee [1 ]
Son, Young-Han [1 ]
Kam, Tae-Eui [1 ]
机构
[1] Korea Univ, Dept Artificial Intelligence, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Brain-computer interface; Electroencephalography; Motor imagery; Zero-calibration; Meta-learning; Inter-subject variability; MOTOR-IMAGERY; BCI SYSTEMS; CLASSIFICATION; (DE)SYNCHRONIZATION; VARIABILITY; PATTERNS; ERD/ERS;
D O I
10.1016/j.eswa.2023.121986
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Transfer learning for motor imagery-based brain-computer interfaces (MI-BCIs) struggles with inter-subject variability, hindering its generalization to new users. This paper proposes an advanced implicit transfer learning framework, META-EEG, designed to overcome the challenge arising from inter-subject variability. By incorporating gradient-based meta-learning with an intermittent freezing strategy, META-EEG ensures efficient feature representation learning, providing a robust zero-calibration solution.A comparative analysis reveals that META-EEG significantly outperforms all the baseline methods and competing methods on three different public datasets. Moreover, we demonstrate the efficiency of the proposed model through a neurophysiological and feature-representational analysis. With its robustness and superior performance on challenging datasets, META-EEG provides an effective solution for calibration-free MI-EEG classification, facilitating broader usability.
引用
收藏
页数:17
相关论文
共 98 条
[1]   A comprehensive review of EEG-based brain-computer interface paradigms [J].
Abiri, Reza ;
Borhani, Soheil ;
Sellers, Eric W. ;
Jiang, Yang ;
Zhao, Xiaopeng .
JOURNAL OF NEURAL ENGINEERING, 2019, 16 (01)
[2]  
Afrakhteh S., 2020, ENERGY EFFICIENCY ME, P25, DOI [DOI 10.1016/B978-0-12-819045-6.00002-9, 10.1016/b978-0-12-819045-6.00002-9]
[3]   Performance variation in motor imagery brain-computer interface: A brief review [J].
Ahn, Minkyu ;
Jun, Sung Chan .
JOURNAL OF NEUROSCIENCE METHODS, 2015, 243 :103-110
[4]   Feature extraction of four-class motor imagery EEG signals based on functional brain network [J].
Ai, Qingsong ;
Chen, Anqi ;
Chen, Kun ;
Liu, Quan ;
Zhou, Tichao ;
Xin, Sijin ;
Ji, Ze .
JOURNAL OF NEURAL ENGINEERING, 2019, 16 (02)
[5]   Implicit and explicit attention mechanisms for zero-shot learning [J].
Alamri, Faisal ;
Dutta, Anjan .
NEUROCOMPUTING, 2023, 534 :55-66
[6]  
Ang KK, 2008, IEEE IJCNN, P2390, DOI 10.1109/IJCNN.2008.4634130
[7]  
Antoniou A., 2019, 7 INT C LEARNING REP
[8]   Optimizing Motor Intention Detection With Deep Learning: Towards Management of Intraoperative Awareness [J].
Avilov, Oleksii ;
Rimbert, Sebastien ;
Popov, Anton ;
Bougrain, Laurent .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (10) :3087-3097
[9]   On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation [J].
Bach, Sebastian ;
Binder, Alexander ;
Montavon, Gregoire ;
Klauschen, Frederick ;
Mueller, Klaus-Robert ;
Samek, Wojciech .
PLOS ONE, 2015, 10 (07)
[10]   Application of BCI systems in neurorehabilitation: a scoping review [J].
Bamdad, Mahdi ;
Zarshenas, Homayoon ;
Auais, Mohammad A. .
DISABILITY AND REHABILITATION-ASSISTIVE TECHNOLOGY, 2015, 10 (05) :355-364