Tuning oxygen release of sodium-ion layered oxide cathode through synergistic surface coating and doping

被引:18
|
作者
Zhang, Xue-Li [1 ]
Huang, Zhi-Xiong [2 ]
Liu, Yan-Ning [1 ]
Su, Meng-Yuan [1 ]
Li, Kai [3 ]
Wu, Xing-Long [2 ,4 ]
机构
[1] Northeast Normal Univ, Fac Chem, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, MOE Key Lab UV Light Emitting Mat & Technol, Minist Educ, Changchun 130024, Jilin, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
[4] Gannan Normal Univ, Key Lab Organo Pharmaceut Chem Jiangxi Prov, GanZhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; Layered oxide; Surface coating; Anionic redox; ANIONIC REDOX ACTIVITY; ELECTROCHEMICAL PERFORMANCE; LITHIUM; BATTERIES;
D O I
10.1016/j.jcis.2023.06.201
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered transition metal oxides have the greatest potential for commercial application as cathode materials for sodium-ion batteries. However, transition metal oxides inevitably undergo an irreversible oxygen loss process during cycling, which leads to structural changes in the material and ultimately to severe capacity degradation. In this work, using density function theory (DFT) calculations, the Ni-O bond is revealed to be the weakest of the M-O bonds, which may lead to structural failure. Herein, the synergistic surface CeO2 modification and the trace doping of Ce elements stimulate oxygen redox and improve its reversibility, thus improving the structural stability and electrochemical performance of the material. Theoretical calculations prove that Na0.67Mn0.7Ni0.2Co0.1O2 (MNC) obtains electrons from CeO2, avoiding destruction of the Ni-O bond by over-energy released during the charging process and inhibiting oxygen loss. The capacity retention was 77.37% for 200 cycles at 500 mA g-1, compared to 33.84% for the unmodified Na0.67Mn0.7Ni0.2Co0.1O2. Overall, the present work demonstrates that the synergistic effect of surface coating and doping is an effective strategy for realizing tuning oxygen release and high electrochemical performance.
引用
收藏
页码:742 / 751
页数:10
相关论文
共 50 条
  • [21] A Stable Layered Oxide Cathode Material for High-Performance Sodium-Ion Battery
    Xiao, Yao
    Zhu, Yon-Fong
    Yao, Hu-Rong
    Wang, Peng-Fei
    Zhang, Xu-Dong
    Li, Hongliang
    Yang, Xinan
    Gu, Lin
    Li, Yong-Chun
    Wang, Tao
    Yin, Ya-Xia
    Guo, Xiao-Dong
    Zhong, Ben-He
    Guo, Yu-Guo
    ADVANCED ENERGY MATERIALS, 2019, 9 (19)
  • [22] Regulation of Coordination Chemistry for Ultrastable Layered Oxide Cathode Materials of Sodium-Ion Batteries
    Gao, Suning
    Zhu, Zhuo
    Fang, Hengyi
    Feng, Kun
    Zhong, Jun
    Hou, Machuan
    Guo, Yihe
    Li, Fei
    Zhang, Wei
    Ma, Zifeng
    Li, Fujun
    ADVANCED MATERIALS, 2024,
  • [23] Research Progress on Ordering Structure of Layered Oxide Cathode Materials for Sodium-Ion Batteries
    Gan L.
    Yao H.
    Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2022, 50 (01): : 148 - 157
  • [24] MgO-Coated Layered Cathode Oxide With Enhanced Stability for Sodium-Ion Batteries
    Xue, Ling
    Bao, Shuo
    Yan, Ling
    Zhang, Yi
    Lu, Jinlin
    Yin, Yansheng
    FRONTIERS IN ENERGY RESEARCH, 2022, 10
  • [25] Regulation of Coordination Chemistry for Ultrastable Layered Oxide Cathode Materials of Sodium-Ion Batteries
    Gao, Suning
    Zhu, Zhuo
    Fang, Hengyi
    Feng, Kun
    Zhong, Jun
    Hou, Machuan
    Guo, Yihe
    Li, Fei
    Zhang, Wei
    Ma, Zifeng
    Li, Fujun
    Advanced Materials, 2024, 36 (16)
  • [26] Suppressing oxygen redox in layered oxide cathode of sodium-ion batteries with ribbon superstructure and solid-solution behavior
    Huang, Zhi-Xiong
    Zhang, Xue-Li
    Zhao, Xin-Xin
    Lu, Hong-Yan
    Zhang, Xin-Yi
    Heng, Yong-Li
    Geng, Hongbo
    Wu, Xing-Long
    JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY, 2023, 160 : 9 - 17
  • [27] Resolving the degradation pathways of the O3-type layered oxide cathode surface through the nano-scale aluminum oxide coating for high-energy density sodium-ion batteries
    Hwang, Jang-Yeon
    Myung, Seung-Taek
    Choi, Ji Ung
    Yoon, Chong Seung
    Yashiro, Hitoshi
    Sun, Yang-Kook
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (45) : 23671 - 23680
  • [28] Surface Engineering Suppresses the Failure of Biphasic Sodium Layered Cathode for High Performance Sodium-Ion Batteries
    Ji, Haocheng
    Zhai, Jingjun
    Chen, Guojie
    Qiu, Xiao
    Fang, Hui
    Zhang, Taolve
    Huang, Zhongyuan
    Zhao, Wenguang
    Wang, Zhenhui
    Chu, Mihai
    Wang, Rui
    Wang, Chaoqi
    Li, Rui
    Zeng, Wen
    Wang, Xinwei
    Xiao, Yinguo
    ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (12)
  • [29] Cathode material stability enhancement for layered manganese-based sodium-ion batteries by doping titanium
    Xiao, Qingmei
    Mahmoodi, Soroosh
    Guo, Ziting
    Huang, Jinchao
    Zhong, Shengwen
    NEW JOURNAL OF CHEMISTRY, 2023, 47 (19) : 9288 - 9296
  • [30] Synergistic activation of anionic redox via cosubstitution to construct high-capacity layered oxide cathode materials for sodium-ion batteries
    Ji, Haocheng
    Ji, Wenhai
    Xue, Haoyu
    Chen, Guojie
    Qi, Rui
    Huang, Zhongyuan
    Fang, Hui
    Chu, Mihai
    Liu, Lele
    Ma, Zhewen
    Xu, Shenyang
    Zhai, Jingjun
    Zeng, Wen
    Schulz, Christian
    Wong, Deniz
    Chen, Huaican
    Xu, Juping
    Yin, Wen
    Pan, Feng
    Xiao, Yinguo
    SCIENCE BULLETIN, 2023, 68 (01) : 65 - 76