Tuning oxygen release of sodium-ion layered oxide cathode through synergistic surface coating and doping

被引:18
|
作者
Zhang, Xue-Li [1 ]
Huang, Zhi-Xiong [2 ]
Liu, Yan-Ning [1 ]
Su, Meng-Yuan [1 ]
Li, Kai [3 ]
Wu, Xing-Long [2 ,4 ]
机构
[1] Northeast Normal Univ, Fac Chem, Changchun 130024, Jilin, Peoples R China
[2] Northeast Normal Univ, MOE Key Lab UV Light Emitting Mat & Technol, Minist Educ, Changchun 130024, Jilin, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Appl Chem, State Key Lab Rare Earth Resource Utilizat, Changchun 130022, Peoples R China
[4] Gannan Normal Univ, Key Lab Organo Pharmaceut Chem Jiangxi Prov, GanZhou 341000, Peoples R China
基金
中国国家自然科学基金;
关键词
Sodium-ion batteries; Layered oxide; Surface coating; Anionic redox; ANIONIC REDOX ACTIVITY; ELECTROCHEMICAL PERFORMANCE; LITHIUM; BATTERIES;
D O I
10.1016/j.jcis.2023.06.201
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Layered transition metal oxides have the greatest potential for commercial application as cathode materials for sodium-ion batteries. However, transition metal oxides inevitably undergo an irreversible oxygen loss process during cycling, which leads to structural changes in the material and ultimately to severe capacity degradation. In this work, using density function theory (DFT) calculations, the Ni-O bond is revealed to be the weakest of the M-O bonds, which may lead to structural failure. Herein, the synergistic surface CeO2 modification and the trace doping of Ce elements stimulate oxygen redox and improve its reversibility, thus improving the structural stability and electrochemical performance of the material. Theoretical calculations prove that Na0.67Mn0.7Ni0.2Co0.1O2 (MNC) obtains electrons from CeO2, avoiding destruction of the Ni-O bond by over-energy released during the charging process and inhibiting oxygen loss. The capacity retention was 77.37% for 200 cycles at 500 mA g-1, compared to 33.84% for the unmodified Na0.67Mn0.7Ni0.2Co0.1O2. Overall, the present work demonstrates that the synergistic effect of surface coating and doping is an effective strategy for realizing tuning oxygen release and high electrochemical performance.
引用
收藏
页码:742 / 751
页数:10
相关论文
共 50 条
  • [1] Advancing Sodium-Ion Battery Performance: Innovative Doping and Coating Strategies for Layered Oxide Cathode Materials
    Shahzadi, Komal
    Zhao, Xiaohan
    Liu, Qi
    He, Wenxiu
    Mu, Daobin
    Li, Yiqing
    Li, Li
    Chen, Renjie
    Wu, Feng
    ADVANCED SUSTAINABLE SYSTEMS, 2025,
  • [2] Improving the Performance of the Layered Nickel Manganese Oxide Cathode of Sodium-Ion Batteries by Direct Coating with Sodium Niobium Oxide
    Lavela, Sergio
    Santos, Antonio Carlos do Nascimento
    da Motta, Fabiana Villela
    Bomio, Mauricio Roberto Delmonte
    Lavela, Pedro
    Vicente, Carlos Perez
    Tirado, Jose Luis
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (42) : 56975 - 56986
  • [3] Hydrogen Sodium Vanadium Oxide Hydrate with Oxygen Vacancy: A New Layered Cathode Material for Sodium-Ion Battery
    Yang, Haofei
    Li, Wenbin
    Luo, Yangyang
    Jia, Shuting
    Zhang, Jianhua
    Yuan, Yitong
    Li, Xifei
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 12 (01) : 18 - 23
  • [4] Cycling performance of layered oxide cathode materials for sodium-ion batteries
    Jinpin Wu
    Junhang Tian
    Xueyi Sun
    Weidong Zhuang
    InternationalJournalofMinerals,MetallurgyandMaterials, 2024, (07) : 1720 - 1744
  • [5] Recent progress on layered oxide cathode materials for sodium-ion batteries
    Jian X.-Y.
    Jin J.-T.
    Wang Y.
    Shen Q.-Y.
    Liu Y.-C.
    Gongcheng Kexue Xuebao/Chinese Journal of Engineering, 2022, 44 (04): : 601 - 611
  • [6] Interfacial engineering of the layered oxide cathode materials for sodium-ion battery
    Zhao, Quanqing
    Wang, Ruru
    Gao, Ming
    Butt, Faheem K.
    Jia, Jianfeng
    Wu, Haishun
    Zhu, Youqi
    NANO RESEARCH, 2024, 17 (03) : 1441 - 1464
  • [7] Cycling performance of layered oxide cathode materials for sodium-ion batteries
    Wu, Jinpin
    Tian, Junhang
    Sun, Xueyi
    Zhuang, Weidong
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2024, 31 (07) : 1720 - 1744
  • [8] Interfacial engineering of the layered oxide cathode materials for sodium-ion battery
    Quanqing Zhao
    Ruru Wang
    Ming Gao
    Faheem K. Butt
    Jianfeng Jia
    Haishun Wu
    Youqi Zhu
    Nano Research, 2024, 17 : 1441 - 1464
  • [9] A Superlattice-Stabilized Layered Oxide Cathode for Sodium-Ion Batteries
    Li, Qi
    Xu, Sheng
    Guo, Shaohua
    Jiang, Kezhu
    Li, Xiang
    Jia, Min
    Wang, Peng
    Zhou, Haoshen
    ADVANCED MATERIALS, 2020, 32 (23)
  • [10] High capacity sodium-rich layered oxide cathode for sodium-ion batteries
    郭根材
    王长昊
    明帮铭
    罗斯玮
    苏恒
    王博亚
    张铭
    尉海军
    王如志
    Chinese Physics B, 2018, (11) : 669 - 675