Using Radiomics and Convolutional Neural Networks for the Prediction of Hematoma Expansion After Intracerebral Hemorrhage

被引:5
作者
Bo, Ruting [1 ,2 ]
Xiong, Zhi [3 ]
Huang, Ting [4 ]
Liu, Lingling [4 ]
Chen, Zhiqiang [2 ,4 ]
机构
[1] Tianjin Hosp, Dept Ultrasound, Tianjin 300200, Peoples R China
[2] Hainan Med Univ, Affiliated Hosp 1, Dept Radiol, 1 Longhua Rd, Haikou 570102, Hainan, Peoples R China
[3] Xianning Cent Hosp, Dept Radiol, Xianning 437100, Peoples R China
[4] Ningxia Med Univ, Gen Hosp, Dept Radiol, Yinchuan 750004, Peoples R China
来源
INTERNATIONAL JOURNAL OF GENERAL MEDICINE | 2023年 / 16卷
基金
中国国家自然科学基金;
关键词
radiomics; hematoma expansion; prediction; convolutional neural networks; intracerebral hemorrhage; BLOOD-PRESSURE REDUCTION; COMPUTED-TOMOGRAPHY; SPOT SIGN; GROWTH; MARKERS;
D O I
10.2147/IJGM.S408725
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background: Hematoma enlargement (HE) is a common complication following acute intracerebral hemorrhage (ICH) and is associated with early deterioration and unfavorable clinical outcomes. This study aimed to evaluate the predictive performance of a computed tomography (CT) based model that utilizes deep learning features in identifying HE.Methods: A total of 408 patients were retrospectively enrolled between January 2015 and December 2020 from our institution. We designed an automatic model that could mask the hematoma area and fusion features of radiomics, clinical data, and convolutional neural network (CNN) in a hybrid model. We assessed the model's performance by using confusion matrix metrics (CM), the area under the receiver operating characteristics curve (AUC), and other statistical indicators.Results: After automated masking, 408 patients were randomly divided into two cohorts with 204 patients in the training set and 204 patients in the validation set. The first cohort trained the CNN model, from which we then extracted radiomics, clinical data, and CNN features for the second validation cohort. After feature selection by K-highest score, a support vector machines (SVM) model classification was used to predict HE. Our hybrid model exhibited a high AUC of 0.949, and 0.95 of precision, 0.83 of recall, and 0.94 of average precision (AP). The CM found that only 5 cases were misidentified by the model.Conclusion: The automatic hybrid model we developed is an end-to-end method and can assist in clinical decision-making, thereby facilitating personalized treatment for patients with ICH.
引用
收藏
页码:3393 / 3402
页数:10
相关论文
共 41 条
[1]   Intensive blood pressure reduction in acute cerebral haemorrhage trial (INTERACT): a randomised pilot trial [J].
Anderson, Craig S. ;
Huang, Yining ;
Wang, Ji Guang ;
Arima, Hisatomi ;
Neal, Bruce ;
Peng, Bin ;
Heeley, Emma ;
Skulina, Christian ;
Parsons, Mark W. ;
Kim, Jong Sung ;
Tao, Qing Ling ;
Li, Yue Chun ;
Jiang, Jian Dong ;
Tai, Li Wen ;
Zhang, Jin Li ;
Xu, En ;
Cheng, Yan ;
Heritier, Stephan ;
Morgenstern, Lewis B. ;
Chalmers, John .
LANCET NEUROLOGY, 2008, 7 (05) :391-399
[2]   Density and Shape as CT Predictors of Intracerebral Hemorrhage Growth [J].
Barras, Christen D. ;
Tress, Brian M. ;
Christensen, Soren ;
MacGregor, Lachlan ;
Collins, Marnie ;
Desmond, Patricia M. ;
Skolnick, Brett E. ;
Mayer, Stephan A. ;
Broderick, Joseph P. ;
Diringer, Michael N. ;
Steiner, Thorsten ;
Davis, Stephen M. .
STROKE, 2009, 40 (04) :1325-1331
[3]   Noncontrast Computed Tomography Markers of Intracerebral Hemorrhage Expansion [J].
Boulouis, Gregoire ;
Morotti, Andrea ;
Charidimou, Andreas ;
Dowlatshahi, Dar ;
Goldstein, Joshua N. .
STROKE, 2017, 48 (04) :1120-1125
[4]   Association Between Hypodensities Detected by Computed Tomography and Hematoma Expansion in Patients With Intracerebral Hemorrhage [J].
Boulouis, Gregoire ;
Morotti, Andrea ;
Brouwers, Bart ;
Charidimou, Andreas ;
Jessel, Michael J. ;
Auriel, Eitan ;
Pontes-Neto, Octavio ;
Ayres, Alison ;
Vashkevich, Anastasia ;
Schwab, Kristin M. ;
Rosand, Jonathan ;
Viswanathan, Anand ;
Gurol, Mahmut E. ;
Greenberg, Steven M. ;
Goldstein, Joshua N. .
JAMA NEUROLOGY, 2016, 73 (08) :961-968
[5]   Determinants of intracerebral hemorrhage growth - An exploratory analysis [J].
Broderick, Joseph P. ;
Diringer, Michael N. ;
Hill, Michael D. ;
Brun, Nikolai C. ;
Mayer, Stephan A. ;
Steiner, Thorsten ;
Skolnick, Brett E. ;
Davis, Stephen M. .
STROKE, 2007, 38 (03) :1072-1075
[6]   Predicting Hematoma Expansion After Primary Intracerebral Hemorrhage [J].
Brouwers, H. Bart ;
Chang, Yuchiao ;
Falcone, Guido J. ;
Cai, Xuemei ;
Ayres, Alison M. ;
Battey, Thomas W. K. ;
Vashkevich, Anastasia ;
McNamara, Kristen A. ;
Valant, Valerie ;
Schwab, Kristin ;
Orzell, Susannah C. ;
Bresette, Linda M. ;
Feske, Steven K. ;
Rost, Natalia S. ;
Romero, Javier M. ;
Viswanathan, Anand ;
Chou, Sherry H. -Y. ;
Greenberg, Steven M. ;
Rosand, Jonathan ;
Goldstein, Joshua N. .
JAMA NEUROLOGY, 2014, 71 (02) :158-164
[7]   Hematoma Expansion following Acute Intracerebral Hemorrhage [J].
Brouwers, H. Bart ;
Greenberg, Steven M. .
CEREBROVASCULAR DISEASES, 2013, 35 (03) :195-201
[8]  
Chen JX, 2016, ADV NEUR IN, V29
[9]   Hematoma growth is a determinant of mortality and poor outcome after intracerebral hemorrhage [J].
Davis, SM ;
Broderick, J ;
Hennerici, M ;
Brun, NC ;
Diringer, MN ;
Mayer, SA ;
Begtrup, K ;
Steiner, T .
NEUROLOGY, 2006, 66 (08) :1175-1181
[10]   Hematoma growth and outcomes in intracerebral hemorrhage The INTERACT1 study [J].
Delcourt, Candice ;
Huang, Yining ;
Arima, Hisatomi ;
Chalmers, John ;
Davis, Stephen M. ;
Heeley, Emma L. ;
Wang, Jiguang ;
Parsons, Mark W. ;
Liu, Guorong ;
Anderson, Craig S. .
NEUROLOGY, 2012, 79 (04) :314-319