Effects of Atrazine exposure on human bone marrow-derived mesenchymal stromal cells assessed by combinatorial assay matrix

被引:2
|
作者
Uwazie, Crystal C. [1 ]
Pirlot, Bonnie M. [1 ]
Faircloth, Tyler U. [1 ]
Patel, Mihir [1 ]
Parr, Rhett N. [1 ]
Zastre, Halie M. [1 ]
Hematti, Peiman [2 ]
Moll, Guido [3 ,4 ,5 ,6 ,7 ,8 ]
Rajan, Devi [1 ]
Chinnadurai, Raghavan [1 ]
机构
[1] Mercer Univ, Dept Biomed Sci, Sch Med, Savannah, GA 31207 USA
[2] Univ Wisconsin Madison, Sch Med & Publ Hlth, Dept Med, Madison, WI USA
[3] BIH Ctr Regenerat Therapies, Berlin, Germany
[4] Charite Univ Med Berlin, Berlin Brandenburg Sch Regenerat Therapies BSRT, Berlin, Germany
[5] Free Univ Berlin, Berlin, Germany
[6] Humboldt Univ, Berlin, Germany
[7] Berlin Inst Hlth, Berlin, Germany
[8] Charite Univ Med Berlin, Dept Nephrol & Internal Intens Care Med, Berlin, Germany
来源
FRONTIERS IN IMMUNOLOGY | 2023年 / 14卷
关键词
mesenchymal stromal; stem cells (MSCs); combinatorial assay matrix technology; immunomodulation and regeneration; cellular phenotype and function; environmental herbicide atrazine; STEM-CELLS; INTERNATIONAL-SOCIETY; ANIMAL-MODELS; GAMMA; PESTICIDES; PLASTICITY; TOXICOLOGY; TOXICITY; PUBERTY; ORIGIN;
D O I
10.3389/fimmu.2023.1214098
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
IntroductionMesenchymal Stromal/Stem cells (MSCs) are an essential component of the regenerative and immunoregulatory stem cell compartment of the human body and thus of major importance in human physiology. The MSCs elicit their beneficial properties through a multitude of complementary mechanisms, which makes it challenging to assess their phenotype and function in environmental toxicity screening. We here employed the novel combinatorial assays matrix approach/technology to profile the MSC response to the herbicide Atrazine, which is a common environmental xenobiotic, that is in widespread agricultural use in the US and other countries, but banned in the EU. Our here presented approach is representative for screening the impact of environmental xenobiotics and toxins on MSCs as an essential representative component of human physiology and well-being. MethodsWe here employed the combinatorial assay matrix approach, including a panel of well standardized assays, such as flow cytometry, multiplex secretome analysis, and metabolic assays, to define the phenotype and functionality of human-donor-derived primary MSCs exposed to the representative xenobiotic Atrazine. This assay matrix approach is now also endorsed for characterization of cell therapies by leading regulatory agencies, such as FDA and EMA. ResultsOur results show that the exposure to Atrazine modulates the metabolic activity, size, and granularity of MSCs in a dose and time dependent manner. Intriguingly, Atrazine exposure leads to a broad modulation of the MSCs secretome (both upregulation and downmodulation of certain factors) with the identification of Interleukin-8 as the topmost upregulated representative secretory molecule. Interestingly, Atrazine attenuates IFN & gamma;-induced upregulation of MHC-class-II, but not MHC-class-I, and early phosphorylation signals on MSCs. Furthermore, Atrazine exposure attenuates IFN & gamma; responsive secretome of MSCs. Mechanistic knockdown analysis identified that the Atrazine-induced effector molecule Interleukin-8 affects only certain but not all the related angiogenic secretome of MSCs. DiscussionThe here described Combinatorial Assay Matrix Technology identified that Atrazine affects both the innate/resting and cytokine-induced/stimulated assay matrix functionality of human MSCs, as identified through the modulation of selective, but not all effector molecules, thus vouching for the great usefulness of this approach to study the impact of xenobiotics on this important human cellular subset involved in the regenerative healing responses in humans.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Molecular and Functional Phenotypes of Human Bone Marrow-Derived Mesenchymal Stromal Cells Depend on Harvesting Techniques
    Walter, Sebastian G.
    Randau, Thomas M.
    Hilgers, Caecilia
    Haddouti, El-Mustapha
    Masson, Werner
    Gravius, Sascha
    Burger, Christof
    Wirtz, Dieter C.
    Schildberg, Frank A.
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (12) : 1 - 12
  • [32] NOTCH Signaling Is Activated through Mechanical Strain in Human Bone Marrow-Derived Mesenchymal Stromal Cells
    Ziouti, Fani
    Ebert, Regina
    Rummler, Maximilian
    Krug, Melanie
    Mueller-Deubert, Sigrid
    Luedemann, Martin
    Jakob, Franz
    Willie, Bettina M.
    Jundt, Franziska
    STEM CELLS INTERNATIONAL, 2019, 2019
  • [33] Bone Marrow-Derived Mesenchymal Stromal Cells Promote Survival and Drug Resistance in Tumor Cells
    Bergfeld, Scott A.
    Blavier, Laurence
    DeClerck, Yves A.
    MOLECULAR CANCER THERAPEUTICS, 2014, 13 (04) : 962 - 975
  • [34] Therapeutic effect of allogeneic bone marrow-derived mesenchymal stromal cells on aortic aneurysms
    Akita, Naohiro
    Narita, Yuji
    Yamawaki-Ogata, Aika
    Usui, Akihiko
    Komori, Kimihiro
    CELL AND TISSUE RESEARCH, 2021, 383 (02) : 781 - 793
  • [35] Secretome analysis of human bone marrow derived mesenchymal stromal cells
    Baberg, Falk
    Geyh, Stefanie
    Waldera-Lupa, Daniel
    Stefanski, Anja
    Zilkens, Christoph
    Haas, Rainer
    Schroeder, Thomas
    Stuehler, Kai
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS, 2019, 1867 (04): : 434 - 441
  • [36] Isolation, expansion and characterization of bone marrow-derived mesenchymal stromal cells in serum-free conditions
    Gottipamula, Sanjay
    Ashwin, K. M.
    Muttigi, Manjunatha S.
    Kannan, Suresh
    Kolkundkar, Udaykumar
    Seetharam, Raviraja N.
    CELL AND TISSUE RESEARCH, 2014, 356 (01) : 123 - 135
  • [37] Effect of Expansion Media on Functional Characteristics of Bone Marrow-Derived Mesenchymal Stromal Cells
    Jakl, Viktoria
    Popp, Tanja
    Haupt, Julian
    Port, Matthias
    Roesler, Reinhild
    Wiese, Sebastian
    Friemert, Benedikt
    Rojewski, Markus T.
    Schrezenmeier, Hubert
    CELLS, 2023, 12 (16)
  • [38] Bone marrow-derived multipotent mesenchymal stromal cells from horses after euthanasia
    Schroeck, Carmen
    Eydt, Carina
    Geburek, Florian
    Kaiser, Lena
    Paebst, Felicitas
    Burk, Janina
    Pfarrer, Christiane
    Staszyk, Carsten
    VETERINARY MEDICINE AND SCIENCE, 2017, 3 (04): : 239 - 251
  • [39] The effects of Exendin-4 on bone marrow-derived mesenchymal cells
    Luciani, Paola
    Fibbi, Benedetta
    Mazzanti, Benedetta
    Deledda, Cristiana
    Ballerini, Lara
    Aldinucci, Alessandra
    Benvenuti, Susanna
    Saccardi, Riccardo
    Peri, Alessandro
    ENDOCRINE, 2018, 60 (03) : 423 - 434
  • [40] Xenogenic bone matrix extracts induce osteoblastic differentiation of human bone marrow-derived mesenchymal stem cells
    El-Sabban, Marwan E.
    El-Khoury, Hilda
    Hamdan-Khalil, Rima
    Sindet-Pedersen, Steen
    Bazarbachi, Ali
    REGENERATIVE MEDICINE, 2007, 2 (04) : 383 - 390