Pulse-to-Pulse Circuit Reconfiguration in Spectrum Sensing Radar

被引:0
作者
Van Hoosier, Trevor [1 ]
Alexander, Jordan [1 ]
Egbert, Austin [1 ]
Roessler, Justin [1 ]
Baylis, Charles [2 ]
Marks, Robert J. [2 ]
机构
[1] Baylor Univ, Dept Elect & Comp Engn, Waco, TX 76706 USA
[2] Baylor Univ, Sch Engn & Comp Sci, Waco, TX USA
来源
2023 IEEE RADAR CONFERENCE, RADARCONF23 | 2023年
关键词
cognitive radar; reconfigurable circuit; circuit optimization; pulse-to-pulse; impedance tuning; COGNITIVE RADAR; CAVITY TUNER; POWER; ALGORITHM; DESIGN;
D O I
10.1109/RADARCONF2351548.2023.10149737
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Because the wireless spectrum is becoming increasingly congested due to re-allocation of radar frequencies for spectrum sharing, radar systems need to be able to adapt and change operating frequency quickly in response to interference. In a cognitive radar capable of spectrum sharing, reconfigurable transmitter circuitry allows the output power to be reoptimized to maximize detection range. Real-time reconfiguration has been accomplished through real-time impedance tuners that have been implemented using a software-defined radio controller with intelligent optimization algorithms. With a new, fast plasma-switch impedance tuner, a complete evaluation of the output power for a single tuner setting can be performed during the on-time of a pulse. We have placed the plasma-switch tuner under control of a spectrum-sharing software-defined radio platform to demonstrate circuit reconfiguration upon changing operating frequency and bandwidth on a pulse-to-pulse basis. The ability to reconfigure the transmitter amplifier load impedance allows the radar to detect targets at greater ranges while maximizing the signal-to-interference-plus-noise ratio by evading potential interference.
引用
收藏
页数:6
相关论文
共 39 条
  • [1] [Anonymous], WHIT HOUS DOD ANN AD
  • [2] A New Radar Waveform Design Algorithm With Improved Feasibility for Spectral Coexistence
    Aubry, A.
    De Maio, A.
    Huang, Y.
    Piezzo, M.
    Farina, A.
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2015, 51 (02) : 1029 - 1038
  • [3] Bando M., 2009, IEEE HPSR, P1, DOI [10.1109/HPSR.2009.5307429, DOI 10.1109/HPSR.2009.5307429]
  • [4] Bode H. W., 1945, Network Analysis and Feedback Amplifier Design, P281
  • [5] Distortion-free varactor diode topologies for RF adaptivity
    Buisman, K
    de Vreede, LCN
    Larson, LE
    Spirito, A
    Akhnoukh, A
    Scholtes, TLM
    Nanver, LK
    [J]. 2005 IEEE MTT-S International Microwave Symposium, Vols 1-4, 2005, : 157 - 160
  • [6] Butler J. T., 2011, 2011 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum, P294, DOI 10.1109/IPDPS.2011.159
  • [7] Intrapulse Radar-Embedded Communications Via Multiobjective Optimization
    Ciuonzo, Domenico
    De Maio, Antonio
    Foglia, Goffredo
    Piezzo, Marco
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2015, 51 (04) : 2960 - 2974
  • [8] Fast Optimization Algorithm for Evanescent-Mode Cavity Tuner Optimization and Timing Reduction in Software-Defined Radar Implementation
    Dockendorf, Angelique
    Egbert, Austin
    Langley, Ellie
    Calabrese, Caleb
    Alcala-Medel, Jose
    Rezayat, Sarvin
    Hays, Zach
    Baylis, Charles
    Martone, Anthony
    Viveiros, Ed
    Gallagher, Kyle
    Semnani, Abbas
    Peroulis, Dimitrios
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2020, 56 (04) : 2762 - 2778
  • [9] Faster Frequency-Agile Reconfiguration of a High-Power Cavity Tuner for Cognitive Radar Using Previous Search Results
    Dockendorf, Angelique
    Langley, Ellie
    Baylis, Charles
    Martone, Anthony
    Gallagher, Kyle
    Viveiros, Ed
    [J]. 2019 IEEE RADIO AND WIRELESS SYMPOSIUM (RWS), 2019, : 107 - 109
  • [10] Continuous Real-Time Circuit Reconfiguration to Maximize Average Output Power in Cognitive Radar Transmitters
    Egbert, Austin
    Goad, Adam
    Baylis, Charles
    Martone, Anthony F.
    Kirk, Benjamin H.
    Marks, Robert J., II
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2022, 58 (03) : 1514 - 1527