TIME OF ARRIVAL OPERATOR IN THE MOMENTUM SPACE

被引:3
作者
Schlichtinger, A. M. [1 ]
Jadczyk, A. [2 ,3 ]
机构
[1] Univ Wroclaw, Fac Phys & Astron, Pl M Borna 9, PL-50204 Wroclaw, Poland
[2] Univ Toulouse III, Lab Phys Theor, Toulouse, France
[3] Ronin Inst, Montclair, NJ 07043 USA
关键词
time operator; relativistic time operator; POVM; Pauli's theorem; Hegerfeldt's lemma; Mandelstam-Tamm's time operator; Heisenberg's uncertainty relation; massless neutrino; QUANTUM-THEORY;
D O I
10.1016/S0034-4877(23)00037-X
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
It is shown that in presence of certain external fields a well-defined self-adjoint time operator exists, satisfying the standard canonical commutation relations with the Hamiltonian. Examples include uniform electric and gravitational fields with nonrelativistic and relativistic Hamiltonians. The physical intepretation of these operators is proposed in terms of time of arrival in the momentum space.
引用
收藏
页码:301 / 313
页数:13
相关论文
共 50 条
[41]   Energy balance of a Bose gas in a curved space-time [J].
Matos, Tonatiuh ;
Avilez, Ana ;
Bernal, Tula ;
Chavanis, Pierre-Henri .
GENERAL RELATIVITY AND GRAVITATION, 2019, 51 (12)
[42]   Time evolution of statistical properties of a radiation field described by a density operator that interpolates between pure and mixing states [J].
Ferreira, C. J. S. ;
Silva, T. M. ;
Baseia, B. .
EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (11)
[43]   Particle-counting statistics of time-and space-dependent fields [J].
Braungardt, Sibylle ;
Rodriguez, Mirta ;
Glauber, Roy J. ;
Lewenstein, Maciej .
PHYSICAL REVIEW A, 2012, 85 (03)
[44]   The Riemann tensor and the Bianchi identity in 5D space-time [J].
Taki, Mehran ;
Mirjalili, Abolfazl .
COMPTES RENDUS PHYSIQUE, 2017, 18 (01) :66-71
[45]   Time evolution of the free Dirac field in spatially flat FLRW space-times [J].
Cotaescu, Ion I. .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2020, 35 (32)
[46]   Physical theories in Galilean space-time and the origin of Schrodinger-like equations [J].
Musielak, Z. E. ;
Fry, J. L. .
ANNALS OF PHYSICS, 2009, 324 (02) :296-308
[48]   Vacuum decomposition of Einstein's theory and knot topology of vacuum space-time [J].
Cho, Y. M. ;
Cho, Franklin H. ;
Yoon, J. H. .
CLASSICAL AND QUANTUM GRAVITY, 2013, 30 (05)
[49]   Numerical solutions of the time-dependent Schrodinger equation: Reduction of the error due to space discretization [J].
Shao, Hezhu ;
Wang, Zhongcheng .
PHYSICAL REVIEW E, 2009, 79 (05)
[50]   REMARKS ON SQUEEZED STATES OF A HARMONIC-OSCILLATOR IN SPATIALLY FLAT ROBERTSON-WALKER SPACE-TIME [J].
LO, CF .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1992, 107 (12) :1451-1454