Single-Image Super-Resolution Challenges: A Brief Review

被引:13
|
作者
Ye, Shutong [1 ]
Zhao, Shengyu [1 ]
Hu, Yaocong [2 ]
Xie, Chao [1 ,3 ]
机构
[1] Nanjing Forestry Univ, Coll Mech & Elect Engn, Nanjing 210037, Peoples R China
[2] Anhui Polytech Univ, Sch Elect Engn, Wuhu 241000, Peoples R China
[3] Nanjing Forestry Univ, Coll Landscape Architecture, Nanjing 210037, Peoples R China
基金
中国国家自然科学基金;
关键词
single-image super-resolution; single-image super-resolution challenges; deep learning; deep networks; QUALITY ASSESSMENT; RECOGNITION; RESOLUTION; NETWORKS;
D O I
10.3390/electronics12132975
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Single-image super-resolution (SISR) is an important task in image processing, aiming to achieve enhanced image resolution. With the development of deep learning, SISR based on convolutional neural networks has also gained great progress, but as the network deepens and the task of SISR becomes more complex, SISR networks become difficult to train, which hinders SISR from achieving greater success. Therefore, to further promote SISR, many challenges have emerged in recent years. In this review, we briefly review the SISR challenges organized from 2017 to 2022 and focus on the in-depth classification of these challenges, the datasets employed, the evaluation methods used, and the powerful network architectures proposed or accepted by the winners. First, depending on the tasks of the challenges, the SISR challenges can be broadly classified into four categories: classic SISR, efficient SISR, perceptual extreme SISR, and real-world SISR. Second, we introduce the datasets commonly used in the challenges in recent years and describe their characteristics. Third, we present the image evaluation methods commonly used in SISR challenges in recent years. Fourth, we introduce the network architectures used by the winners, mainly to explore in depth where the advantages of their network architectures lie and to compare the results of previous years' winners. Finally, we summarize the methods that have been widely used in SISR in recent years and suggest several possible promising directions for future SISR.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Single-Image Super-Resolution: A Survey
    Yao, Tingting
    Luo, Yu
    Chen, Yantong
    Yang, Dongqiao
    Zhao, Lei
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, CSPS 2018, VOL II: SIGNAL PROCESSING, 2020, 516 : 119 - 125
  • [2] Single-Image Super-Resolution: A Benchmark
    Yang, Chih-Yuan
    Ma, Chao
    Yang, Ming-Hsuan
    COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 : 372 - 386
  • [3] Deep Learning for Single Image Super-Resolution: A Brief Review
    Yang, Wenming
    Zhang, Xuechen
    Tian, Yapeng
    Wang, Wei
    Xue, Jing-Hao
    Liao, Qingmin
    IEEE TRANSACTIONS ON MULTIMEDIA, 2019, 21 (12) : 3106 - 3121
  • [4] A Content Dependent Kernel For Single-Image Super-Resolution
    Saryazdi, Saman
    Saryazdi, Saeid
    Nezanabadipour, Hossein
    2013 5TH CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2013, : 453 - 456
  • [5] PERCEPTUAL EVALUATION OF SINGLE-IMAGE SUPER-RESOLUTION RECONSTRUCTION
    Wang, Guangcheng
    Li, Leida
    Li, Qiaohong
    Gu, Ke
    Lu, Zhaolin
    Qian, Jiansheng
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 3145 - 3149
  • [6] Multilevel and Multiscale Network for Single-Image Super-Resolution
    Yang, Yong
    Zhang, Dongyang
    Huang, Shuying
    Wu, Jiajun
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (12) : 1877 - 1881
  • [7] Single-Image Super-Resolution Using Multihypothesis Prediction
    Chen, Chen
    Fowler, James E.
    2012 CONFERENCE RECORD OF THE FORTY SIXTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS AND COMPUTERS (ASILOMAR), 2012, : 608 - 612
  • [8] EXTERNAL AND INTERNAL LEARNING FOR SINGLE-IMAGE SUPER-RESOLUTION
    Wang, Shuang
    Lin, Shaopeng
    Liang, Xuefeng
    Yue, Bo
    Jiao, Licheng
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 128 - 132
  • [9] Single-image super-resolution via local learning
    Yi Tang
    Pingkun Yan
    Yuan Yuan
    Xuelong Li
    International Journal of Machine Learning and Cybernetics, 2011, 2 : 15 - 23
  • [10] Rectified Binary Network for Single-Image Super-Resolution
    Xin, Jingwei
    Wang, Nannan
    Jiang, Xinrui
    Li, Jie
    Wang, Xiaoyu
    Gao, Xinbo
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024,