LARGE TIME BEHAVIOR OF A HYPERBOLIC-PARABOLIC MODEL OF VASCULOGENESIS

被引:0
作者
Liu, M. E. N. G. Q. I. A. N. [1 ]
Wu, Z. H. I. G. A. N. G. [1 ]
机构
[1] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 02期
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Model of vasculogenesis; well-posedness; decay rate; COMPRESSIBLE EULER EQUATIONS; NONLINEAR DIFFUSION WAVES; P-SYSTEM; ASYMPTOTIC-BEHAVIOR; CONVERGENCE-RATES; SMOOTH SOLUTIONS; EXISTENCE; STABILITY; VACUUM; DECAY;
D O I
10.3934/dcdsb.2023113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly consider the Cauchy problem of a hyperbolic parabolic model of vasculogenesis in dimension three. We first obtain the optimal L2-decay rate of the solution and its highest order derivatives when the initial perturbation is small in H3(R3) and bounded in L1(R3). Here, the optimality means there is no decay loss for the highest-order spatial derivatives. This refines that in [21], where only the optimal L2-decay rate of the solution was given when the initial perturbation is small in H4 & AND; L1(R3). Next, we derive space-time descriptions of the solution based on the analysis of Green's function.
引用
收藏
页码:777 / 795
页数:19
相关论文
共 50 条
  • [41] Global analysis of smooth solutions to a hyperbolic-parabolic coupled system
    Yinghui Zhang
    Haiying Deng
    Mingbao Sun
    Frontiers of Mathematics in China, 2013, 8 : 1437 - 1460
  • [42] Numerical Solution of a Hyperbolic-Parabolic Problem with Nonlocal Boundary Conditions
    Ashyralyev, Allaberen
    Ozdemir, Yildirim
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2012, 6 : 31 - 48
  • [43] Discontinuous traveling waves for scalar hyperbolic-parabolic balance law
    Xu, Tianyuan
    Jin, Chunhua
    Ji, Shanming
    BOUNDARY VALUE PROBLEMS, 2016, : 1 - 9
  • [44] Deterministic homogenization of weakly damped nonlinear hyperbolic-parabolic equations
    Nnang, Hubert
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2012, 19 (05): : 539 - 574
  • [45] On the fractional Fisher information with applications to a hyperbolic-parabolic system of chemotaxis
    Granero-Belinchon, Rafael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (04) : 3250 - 3283
  • [46] LARGE TIME BEHAVIOR OF SOLUTIONS TO A REDUCED GRAVITY TWO AND A HALF LAYER MODEL WITH DAMPING
    Yang, Qimeng
    Zhu, Mengmeng
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (05): : 2072 - 2091
  • [47] DISCRETE DUALITY FINITE VOLUME SCHEMES FOR DOUBLY NONLINEAR DEGENERATE HYPERBOLIC-PARABOLIC EQUATIONS
    Andreianov, B.
    Bendahmane, M.
    Karlsen, K. H.
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2010, 7 (01) : 1 - 67
  • [48] HYPERBOLIC-PARABOLIC SINGULAR PERTURBATION FOR MILDLY DEGENERATE KIRCHHOFF EQUATIONS: GLOBAL-IN-TIME ERROR ESTIMATES
    Ghisi, Marina
    Gobbino, Massimo
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (04) : 1313 - 1332
  • [49] LARGE TIME BEHAVIOR OF SOLUTIONS TO 1-DIMENSIONAL BIPOLAR QUANTUM HYDRODYNAMIC MODEL FOR SEMICONDUCTORS
    Li, Xing
    Yong, Yan
    ACTA MATHEMATICA SCIENTIA, 2017, 37 (03) : 806 - 835
  • [50] VISCOUS BOUNDARY LAYERS IN HYPERBOLIC-PARABOLIC SYSTEMS WITH NEUMANN BOUNDARY CONDITIONS
    Gues, Olivier
    Metivier, Guy
    Williams, Mark
    Zumbrun, Kevin
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 2014, 47 (01): : 181 - 243