LARGE TIME BEHAVIOR OF A HYPERBOLIC-PARABOLIC MODEL OF VASCULOGENESIS

被引:0
作者
Liu, M. E. N. G. Q. I. A. N. [1 ]
Wu, Z. H. I. G. A. N. G. [1 ]
机构
[1] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 02期
基金
上海市自然科学基金; 中国国家自然科学基金;
关键词
Model of vasculogenesis; well-posedness; decay rate; COMPRESSIBLE EULER EQUATIONS; NONLINEAR DIFFUSION WAVES; P-SYSTEM; ASYMPTOTIC-BEHAVIOR; CONVERGENCE-RATES; SMOOTH SOLUTIONS; EXISTENCE; STABILITY; VACUUM; DECAY;
D O I
10.3934/dcdsb.2023113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly consider the Cauchy problem of a hyperbolic parabolic model of vasculogenesis in dimension three. We first obtain the optimal L2-decay rate of the solution and its highest order derivatives when the initial perturbation is small in H3(R3) and bounded in L1(R3). Here, the optimality means there is no decay loss for the highest-order spatial derivatives. This refines that in [21], where only the optimal L2-decay rate of the solution was given when the initial perturbation is small in H4 & AND; L1(R3). Next, we derive space-time descriptions of the solution based on the analysis of Green's function.
引用
收藏
页码:777 / 795
页数:19
相关论文
共 50 条
  • [11] Global solutions for quasi-linear hyperbolic-parabolic coupled systems of thermoviscoelasticity
    Dharmawardane, P. M. N.
    Kawashima, S.
    Shibata, Y.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 405 : 76 - 102
  • [12] LARGE TIME BEHAVIOR FOR THE IBVP OF THE 3-D NISHIDA'S MODEL
    Deng, Shijin
    NETWORKS AND HETEROGENEOUS MEDIA, 2010, 5 (01) : 133 - 142
  • [13] Linear decay property for the hyperbolic-parabolic coupled systems of thermoviscoelasticity
    Dharmawardane, Priyanjana M. N.
    Kawashima, Shuichi
    Ogawa, Takayoshi
    Segata, Jun-ichi
    JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2023, 20 (04) : 967 - 986
  • [14] Global existence and asymptotic behavior of smooth solutions to a coupled hyperbolic-parabolic system
    Zhang, Yinghui
    Tan, Zhong
    Sun, Ming-Bao
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2013, 14 (01) : 465 - 482
  • [15] A GENERAL PERFECTLY MATCHED LAYER MODEL FOR HYPERBOLIC-PARABOLIC SYSTEMS
    Appeloe, Daniel
    Hagstrom, Thomas
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (05) : 3301 - 3323
  • [16] Nonlinear stability of phase transition steady states to a hyperbolic-parabolic system modeling vascular networks
    Hong, Guangyi
    Peng, Hongyun
    Wang, Zhi-An
    Zhu, Changjiang
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (04): : 1480 - 1514
  • [17] Contraction for large perturbations of traveling waves in a hyperbolic-parabolic system arising from a chemotaxis model
    Choi, Kyudong
    Kang, Moon-Jin
    Kwon, Young-Sam
    Vasseur, Alexis F.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2020, 30 (02) : 387 - 437
  • [18] GLOBAL DYNAMICS OF A HYPERBOLIC-PARABOLIC MODEL ARISING FROM CHEMOTAXIS
    Li, Tong
    Pan, Ronghua
    Zhao, Kun
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2012, 72 (01) : 417 - 443
  • [19] ON A HYPERBOLIC-PARABOLIC MIXED TYPE EQUATION
    Zhan, Huashui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2017, 10 (03): : 605 - 624
  • [20] GLOBAL SOLUTIONS TO A HYPERBOLIC-PARABOLIC COUPLED SYSTEM WITH LARGE INITIAL DATA
    Guo Jun
    Xiao Jixiong
    Zhao Huijiang
    Zhu Changjiang
    ACTA MATHEMATICA SCIENTIA, 2009, 29 (03) : 629 - 641