LARGE TIME BEHAVIOR OF A HYPERBOLIC-PARABOLIC MODEL OF VASCULOGENESIS

被引:0
作者
Liu, M. E. N. G. Q. I. A. N. [1 ]
Wu, Z. H. I. G. A. N. G. [1 ]
机构
[1] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 02期
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
Model of vasculogenesis; well-posedness; decay rate; COMPRESSIBLE EULER EQUATIONS; NONLINEAR DIFFUSION WAVES; P-SYSTEM; ASYMPTOTIC-BEHAVIOR; CONVERGENCE-RATES; SMOOTH SOLUTIONS; EXISTENCE; STABILITY; VACUUM; DECAY;
D O I
10.3934/dcdsb.2023113
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly consider the Cauchy problem of a hyperbolic parabolic model of vasculogenesis in dimension three. We first obtain the optimal L2-decay rate of the solution and its highest order derivatives when the initial perturbation is small in H3(R3) and bounded in L1(R3). Here, the optimality means there is no decay loss for the highest-order spatial derivatives. This refines that in [21], where only the optimal L2-decay rate of the solution was given when the initial perturbation is small in H4 & AND; L1(R3). Next, we derive space-time descriptions of the solution based on the analysis of Green's function.
引用
收藏
页码:777 / 795
页数:19
相关论文
共 41 条
[1]  
Ambrosi D., 2005, J THEOR MED, V6, P1, DOI DOI 10.1080/1027366042000327098
[2]  
Berthelin F, 2016, COMMUN MATH SCI, V14, P147, DOI 10.4310/CMS.2016.v14.n1.a6
[3]   PHASE TRANSITIONS AND BUMP SOLUTIONS OF THE KELLER-SEGEL MODEL WITH VOLUME EXCLUSION [J].
Carrillo, Jose A. ;
Chen, Xinfu ;
Wang, Qi ;
Wang, Zhian ;
Zhang, Lu .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (01) :232-261
[4]  
Chandrasekhar S., 1957, An Introduction to the Study of Stellar Structure
[5]   Kinetic and hydrodynamic models of chemotactic aggregation [J].
Chavanis, Pierre-Henri ;
Sire, Clement .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 384 (02) :199-222
[6]  
Choudhuri A. R., 1998, PHYS FLUIDS PLASMAS
[7]   GLOBAL BV SOLUTIONS FOR THE P-SYSTEM WITH FRICTIONAL DAMPING [J].
Dafermos, Constantine M. ;
Pan, Ronghua .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2009, 41 (03) :1190-1205
[8]   Half space problem for Euler equations with damping in 3-D [J].
Deng, Shijin ;
Wang, Weike .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 263 (11) :7372-7411
[9]   SINGULAR CONVERGENCE OF NONLINEAR HYPERBOLIC CHEMOTAXIS SYSTEMS TO KELLER-SEGEL TYPE MODELS [J].
Di Francesco, Marco ;
Donatelli, Donatella .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2010, 13 (01) :79-100
[10]  
Di Russo C., 2012, Rend. Mat. Appl, V32, P117