Longitudinal fundus imaging and its genome-wide association analysis provide evidence for a human retinal aging clock

被引:21
作者
Ahadi, Sara [1 ]
Wilson, Kenneth A. [2 ]
Babenko, Boris [3 ]
McLean, Cory Y. [4 ]
Bryant, Drew [1 ]
Pritchard, Orion [1 ]
Kumar, Ajay [5 ]
Carrera, Enrique M. [2 ]
Lamy, Ricardo [6 ]
Stewart, Jay M. [7 ]
Varadarajan, Avinash [3 ]
Berndl, Marc [1 ]
Kapahi, Pankaj [2 ]
Bashir, Ali [1 ]
机构
[1] Google Res, Mountain View, CA 94043 USA
[2] Buck Inst Res Aging, Novato, CA 94945 USA
[3] Google Hlth, Palo Alto, CA USA
[4] Google Hlth, Cambridge, MA 02142 USA
[5] Post Grad Inst Med Educ & Res, Dept Biophys, Chandigarh, India
[6] Zuckerberg San Francisco Gen Hosp & Trauma Ctr, Dept Ophthalmol, San Francisco, CA USA
[7] Univ Calif San Francisco, Dept Ophthalmol, San Francisco, CA USA
关键词
aging clock; fundus imaging; deep learning; biological age; longitudinal sampling; Human; D; melanogaster; DIABETIC-RETINOPATHY; RISK-FACTORS; EXPRESSION; SYSTEM;
D O I
10.7554/eLife.82364
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biological age, distinct from an individual's chronological age, has been studied extensively through predictive aging clocks. However, these clocks have limited accuracy in short time-scales. Here we trained deep learning models on fundus images from the EyePACS dataset to predict individuals' chronological age. Our retinal aging clocking, 'eyeAge', predicted chronological age more accurately than other aging clocks (mean absolute error of 2.86 and 3.30 years on quality-filtered data from EyePACS and UK Biobank, respectively). Additionally, eyeAge was independent of blood marker-based measures of biological age, maintaining an all-cause mortality hazard ratio of 1.026 even when adjusted for phenotypic age. The individual-specific nature of eyeAge was reinforced via multiple GWAS hits in the UK Biobank cohort. The top GWAS locus was further validated via knockdown of the fly homolog, Alk, which slowed age-related decline in vision in flies. This study demonstrates the potential utility of a retinal aging clock for studying aging and age-related diseases and quantitatively measuring aging on very short time-scales, opening avenues for quick and actionable evaluation of gero-protective therapeutics.
引用
收藏
页数:16
相关论文
共 59 条
[1]  
Ahadi S., 2023, CMCLEAN EYE AGE PATC
[2]   Personal aging markers and ageotypes revealed by deep longitudinal profiling [J].
Ahadi, Sara ;
Zhou, Wenyu ;
Schussler-Fiorenza Rose, Sophia Miryam ;
Sailani, M. Reza ;
Contrepois, Kevin ;
Avina, Monika ;
Ashland, Melanie ;
Brunet, Anne ;
Snyder, Michael .
NATURE MEDICINE, 2020, 26 (01) :83-+
[3]   Large-scale machine-learning-based phenotyping significantly improves genomic discovery for optic nerve head morphology [J].
Alipanahi, Babak ;
Hormozdiari, Farhad ;
Behsaz, Babak ;
Cosentino, Justin ;
McCaw, Zachary R. ;
Schorsch, Emanuel ;
Sculley, D. ;
Dorfman, Elizabeth H. ;
Foster, Paul J. ;
Peng, Lily H. ;
Phene, Sonia ;
Hammel, Naama ;
Carroll, Andrew ;
Khawaja, Anthony P. ;
McLean, Cory Y. .
AMERICAN JOURNAL OF HUMAN GENETICS, 2021, 108 (07) :1217-1230
[4]  
[Anonymous], 2001, Biotech Software Internet Report: The Computer Soft- ware Journal for Scient, DOI DOI 10.1089/152791601750294344
[5]   The retina in Parkinsons disease [J].
Archibald, Neil K. ;
Clarke, Michael P. ;
Mosimann, Urs P. ;
Burn, David J. .
BRAIN, 2009, 132 :1128-1145
[6]   Epigenetic Predictor of Age [J].
Bocklandt, Sven ;
Lin, Wen ;
Sehl, Mary E. ;
Sanchez, Francisco J. ;
Sinsheimer, Janet S. ;
Horvath, Steve ;
Vilain, Eric .
PLOS ONE, 2011, 6 (06)
[7]   The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019 [J].
Buniello, Annalisa ;
MacArthur, Jacqueline A. L. ;
Cerezo, Maria ;
Harris, Laura W. ;
Hayhurst, James ;
Malangone, Cinzia ;
McMahon, Aoife ;
Morales, Joannella ;
Mountjoy, Edward ;
Sollis, Elliot ;
Suveges, Daniel ;
Vrousgou, Olga ;
Whetzel, Patricia L. ;
Amode, Ridwan ;
Guillen, Jose A. ;
Riat, Harpreet S. ;
Trevanion, Stephen J. ;
Hall, Peggy ;
Junkins, Heather ;
Flicek, Paul ;
Burdett, Tony ;
Hindorff, Lucia A. ;
Cunningham, Fiona ;
Parkinson, Helen .
NUCLEIC ACIDS RESEARCH, 2019, 47 (D1) :D1005-D1012
[8]   Automatic detection of 39 fundus diseases and conditions in retinal photographs using deep neural networks [J].
Cen, Ling-Ping ;
Ji, Jie ;
Lin, Jian-Wei ;
Ju, Si-Tong ;
Lin, Hong-Jie ;
Li, Tai-Ping ;
Wang, Yun ;
Yang, Jian-Feng ;
Liu, Yu-Fen ;
Tan, Shaoying ;
Tan, Li ;
Li, Dongjie ;
Wang, Yifan ;
Zheng, Dezhi ;
Xiong, Yongqun ;
Wu, Hanfu ;
Jiang, Jingjing ;
Wu, Zhenggen ;
Huang, Dingguo ;
Shi, Tingkun ;
Chen, Binyao ;
Yang, Jianling ;
Zhang, Xiaoling ;
Luo, Li ;
Huang, Chukai ;
Zhang, Guihua ;
Huang, Yuqiang ;
Ng, Tsz Kin ;
Chen, Haoyu ;
Chen, Weiqi ;
Pang, Chi Pui ;
Zhang, Mingzhi .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   Advanced literature analysis in a Big Data world [J].
Cheadle, Chris ;
Cao, Hongbao ;
Kalinin, Andrey ;
Hodgkinson, Jaqui .
ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 2017, 1387 (01) :25-33
[10]   Personal Omics Profiling Reveals Dynamic Molecular and Medical Phenotypes [J].
Chen, Rui ;
Mias, George I. ;
Li-Pook-Than, Jennifer ;
Jiang, Lihua ;
Lam, Hugo Y. K. ;
Chen, Rong ;
Miriami, Elana ;
Karczewski, Konrad J. ;
Hariharan, Manoj ;
Dewey, Frederick E. ;
Cheng, Yong ;
Clark, Michael J. ;
Im, Hogune ;
Habegger, Lukas ;
Balasubramanian, Suganthi ;
O'Huallachain, Maeve ;
Dudley, Joel T. ;
Hillenmeyer, Sara ;
Haraksingh, Rajini ;
Sharon, Donald ;
Euskirchen, Ghia ;
Lacroute, Phil ;
Bettinger, Keith ;
Boyle, Alan P. ;
Kasowski, Maya ;
Grubert, Fabian ;
Seki, Scott ;
Garcia, Marco ;
Whirl-Carrillo, Michelle ;
Gallardo, Mercedes ;
Blasco, Maria A. ;
Greenberg, Peter L. ;
Snyder, Phyllis ;
Klein, Teri E. ;
Altman, Russ B. ;
Butte, Atul J. ;
Ashley, Euan A. ;
Gerstein, Mark ;
Nadeau, Kari C. ;
Tang, Hua ;
Snyder, Michael .
CELL, 2012, 148 (06) :1293-1307