Radiomics, a Promising New Discipline: Example of Hepatocellular Carcinoma

被引:7
作者
Levi-Strauss, Thomas [1 ]
Tortorici, Bettina [2 ]
Lopez, Olivier [2 ]
Viau, Philippe [3 ]
Ouizeman, Dann J. [1 ]
Schall, Baptiste [4 ]
Adhoute, Xavier [5 ]
Humbert, Olivier [6 ,7 ]
Chevallier, Patrick [2 ]
Gual, Philippe [8 ]
Fillatre, Lionel [4 ]
Anty, Rodolphe [1 ,8 ]
机构
[1] Univ Hosp Nice, Hepatol Unit, 151 Route St Antoine de Ginestiere, F-06200 Nice, France
[2] Univ Hosp Nice, Dept Diag & Intervent Imaging, 151 Route St Antoine de Ginestiere, F-06200 Nice, France
[3] Univ Hosp Nice, Dept Nucl Med, 151 Route St Antoine de Ginestiere, F-06200 Nice, France
[4] Univ Cote dAzur, CN3S, I3S, F-06000 Nice, France
[5] St Joseph Hosp, 26 Bd Louvain, F-13008 Marseille, France
[6] Ctr Antoine Lacassagne, Dept Nucl Med, 33 Ave Valombrose, F-06100 Nice, France
[7] Univ Cote dAzur, TIRO UMR E 4320, F-06000 Nice, France
[8] Univ Cote dAzur, INSERM, U1065, C3M, F-06000 Nice, France
关键词
radiomics; artificial intelligence; precision medicine; hepatocellular carcinoma; MICROVASCULAR INVASION; HETEROGENEITY;
D O I
10.3390/diagnostics13071303
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Radiomics is a discipline that involves studying medical images through their digital data. Using "artificial intelligence" algorithms, radiomics utilizes quantitative and high-throughput analysis of an image's textural richness to obtain relevant information for clinicians, from diagnosis assistance to therapeutic guidance. Exploitation of these data could allow for a more detailed characterization of each phenotype, for each patient, making radiomics a new biomarker of interest, highly promising in the era of precision medicine. Moreover, radiomics is non-invasive, cost-effective, and easily reproducible in time. In the field of oncology, it performs an analysis of the entire tumor, which is impossible with a single biopsy but is essential for understanding the tumor's heterogeneity and is known to be closely related to prognosis. However, current results are sometimes less accurate than expected and often require the addition of non-radiomics data to create a performing model. To highlight the strengths and weaknesses of this new technology, we take the example of hepatocellular carcinoma and show how radiomics could facilitate its diagnosis in difficult cases, predict certain histological features, and estimate treatment response, whether medical or surgical.
引用
收藏
页数:11
相关论文
共 34 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   Pan-cancer analysis of the extent and consequences of intratumor heterogeneity [J].
Andor, Noemi ;
Graham, Trevor A. ;
Jansen, Marnix ;
Xia, Li C. ;
Aktipis, C. Athena ;
Petritsch, Claudia ;
Ji, Hanlee P. ;
Maley, Carlo C. .
NATURE MEDICINE, 2016, 22 (01) :105-+
[3]   Artificial Intelligence in Cancer Research and Precision Medicine [J].
Bhinder, Bhavneet ;
Gilvary, Coryandar ;
Madhukar, Neel S. ;
Elemento, Olivier .
CANCER DISCOVERY, 2021, 11 (04) :900-915
[4]   Signature of survival: a 18F-FDG PET based whole-liver radiomic analysis predicts survival after 90Y-TARE for hepatocellular carcinoma [J].
Blanc-Durand, Paul ;
Van der Gucht, Axel ;
Jreige, Mario ;
Nicod-Lalonde, Marie ;
Silva-Monteiro, Marina ;
Prior, John O. ;
Denys, Alban ;
Depeursinge, Adrien ;
Schaefer, Niklaus .
ONCOTARGET, 2018, 9 (04) :4549-4558
[5]   Heterogeneity of Patients with Intermediate (BCLC B) Hepatocellular Carcinoma: Proposal for a Subclassification to Facilitate Treatment Decisions [J].
Bolondi, Luigi ;
Burroughs, Andrew ;
Dufour, Jean-Francois ;
Galle, Peter R. ;
Mazzaferro, Vincenzo ;
Piscaglia, Fabio ;
Raoul, Jean Luc ;
Sangro, Bruno .
SEMINARS IN LIVER DISEASE, 2012, 32 (04) :348-359
[6]   The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy [J].
Bruni, Daniela ;
Angell, Helen K. ;
Galon, Jerome .
NATURE REVIEWS CANCER, 2020, 20 (11) :662-680
[7]   The causes and consequences of genetic heterogeneity in cancer evolution [J].
Burrell, Rebecca A. ;
McGranahan, Nicholas ;
Bartek, Jiri ;
Swanton, Charles .
NATURE, 2013, 501 (7467) :338-345
[8]   Development of pre and post-operative models to predict early recurrence of hepatocellular carcinoma after surgical resection [J].
Chan, Anthony W. H. ;
Zhong, Jianhong ;
Berhane, Sarah ;
Toyoda, Hidenori ;
Cucchetti, Alessandro ;
Shi, KeQing ;
Tada, Toshifumi ;
Chong, Charing C. N. ;
Xiang, Bang-De ;
Li, Le-Qun ;
Lai, Paul B. S. ;
Mazzaferro, Vincenzo ;
Garcia-Finana, Marta ;
Kudo, Masatoshi ;
Kumada, Takashi ;
Roayaie, Sasan ;
Johnson, Philip J. .
JOURNAL OF HEPATOLOGY, 2018, 69 (06) :1284-1293
[9]   Pretreatment prediction of immunoscore in hepatocellular cancer: a radiomics-based clinical model based on Gd-EOB-DTPA-enhanced MRI imaging [J].
Chen, Shuling ;
Feng, Shiting ;
Wei, Jingwei ;
Liu, Fei ;
Li, Bin ;
Li, Xin ;
Hou, Yang ;
Gu, Dongsheng ;
Tang, Mimi ;
Xiao, Han ;
Jia, Yingmei ;
Peng, Sui ;
Tian, Jie ;
Kuang, Ming .
EUROPEAN RADIOLOGY, 2019, 29 (08) :4177-4187
[10]   2017 Version of LI-RADS for CT and MR Imaging: An Update [J].
Elsayes, Khaled M. ;
Hooker, Jonathan C. ;
Agrons, Michelle M. ;
Kielar, Ania Z. ;
Tang, An ;
Fowler, Kathryn J. ;
Chernyak, Victoria ;
Bashir, Mustafa R. ;
Kono, Yuko ;
Do, Richard K. ;
Mitchell, Donald G. ;
Kamaya, Aya ;
Hecht, Elizabeth M. ;
Sirlin, Claude B. .
RADIOGRAPHICS, 2017, 37 (07) :1994-2017