Suppressing Universal Cathode Crossover in High-Energy Lithium Metal Batteries via a Versatile Interlayer Design

被引:15
作者
Xie, Chuyi [1 ,2 ]
Zhao, Chen [3 ]
Jeong, Heonjae [4 ]
Li, Tianyi [5 ]
Li, Luxi [5 ]
Xu, Wenqian [5 ]
Yang, Zhenzhen [3 ]
Lin, Cong [1 ,2 ]
Liu, Qiang [1 ,2 ]
Cheng, Lei [4 ]
Huang, Xingkang [3 ]
Xu, Gui-Liang [3 ]
Amine, Khalil [3 ,6 ,7 ,8 ]
Chen, Guohua [1 ,2 ,9 ]
机构
[1] Hong Kong Polytech Univ, Dept Mech Engn, Hung Hom, 11 Yuk Choi Rd, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Res Inst Smart Energy RISE, Hung Hom, 11 Yuk Choi Rd, Hong Kong, Peoples R China
[3] Argonne Natl Lab, Chem Sci & Engn Div, 9700 S Cass Ave, Lemont, IL 60439 USA
[4] Argonne Natl Lab, Mat Sci Div, 9700 S Cass Ave, Lemont, IL 60439 USA
[5] Argonne Natl Lab, X Ray Sci Div, 9700 S Cass Ave, Lemont, IL 60439 USA
[6] Stanford Univ, Mat Sci & Engn, Stanford, CA 94305 USA
[7] Mohammed VI Polytech Univ, Mat Sci & Nanoengn, Lot 660 Hay Moulay Rachid, Ben Guerir 43150, Morocco
[8] Imam Abdulrahman Bin Faisal Univ IAU, Inst Research& Med Consultat, Dammam, Saudi Arabia
[9] City Univ Hong Kong, Sch Energy & Environm, Kowloon, Hong Kong, Peoples R China
关键词
Cathode Cross-over; High-Energy Cathode; Lithium-Metal Batteries; Solid-Electrolyte Interphase; DEPOSITION; ENCAPSULATION; GRAPHENE; ANODES; OXYGEN; SITES;
D O I
10.1002/anie.202217476
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The universal cathode crossover such as chemical and oxygen has been significantly overlooked in lithium metal batteries using high-energy cathodes which leads to severe capacity degradation and raises serious safety concerns. Herein, a versatile and thin (approximate to 25 mu m) interlayer composed of multifunctional active sites was developed to simultaneously regulate the Li deposition process and suppress the cathode crossover. The as-induced dual-gradient solid-electrolyte interphase combined with abundant lithiophilic sites enable stable Li stripping/plating process even under high current density of 10 mA cm(-2). Moreover, X-ray photoelectron spectroscopy and synchrotron X-ray experiments revealed that N-rich framework and CoZn dual active sites can effectively mitigate the undesired cathode crossover, hence significantly minimizing Li corrosion. Therefore, assembled lithium metal cells using various high-energy cathode materials including LiNi0.7Mn0.2Co0.1O2, Li1.2Co0.1Mn0.55Ni0.15O2, and sulfur demonstrate significantly improved cycling stability with high cathode loading.
引用
收藏
页数:8
相关论文
共 50 条
[1]   Reining in dissolved transition-metal ions [J].
Asl, Hooman Yaghoobnejad ;
Manthiram, Arumugam .
SCIENCE, 2020, 369 (6500) :140-141
[2]   Free-standing ultrathin lithium metal-graphene oxide host foils with controllable thickness for lithium batteries [J].
Chen, Hao ;
Yang, Yufei ;
Boyle, David T. ;
Jeong, You Kyeong ;
Xu, Rong ;
de Vasconcelos, Luize Scalco ;
Huang, Zhuojun ;
Wang, Hansen ;
Wang, Hongxia ;
Huang, Wenxiao ;
Li, Huiqiao ;
Wang, Jiangyan ;
Gu, Hanke ;
Matsumoto, Ryuhei ;
Motohashi, Kazunari ;
Nakayama, Yuri ;
Zhao, Kejie ;
Cui, Yi .
NATURE ENERGY, 2021, 6 (08) :790-798
[3]   A Robust Li-Intercalated Interlayer withStrong Electron Withdrawing Ability EnablesDurable and High-Rate Li Metal Anode [J].
Chen, Jiahe ;
Li, Zhendong ;
Sun, Nannan ;
Xu, Jinting ;
Li, Qian ;
Yao, Xiayin ;
Ming, Jun ;
Peng, Zhe .
ACS ENERGY LETTERS, 2022, 7 (05) :1594-1603
[4]   Stabilizing Lithium Metal Anodes by a Self-Healable and Li-Regulating Interlayer [J].
Cui, Ximing ;
Chu, Ying ;
Wang, Xiaohui ;
Zhang, Xingzhao ;
Li, Yuxuan ;
Pan, Qinmin .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (37) :44983-44990
[5]   Effect of water on the stability of zinc in 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide ionic liquid [J].
Dilasari, Bonita ;
Jung, Yeojin ;
Kwon, Kyungjung .
JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2017, 45 :375-379
[6]   Inducing the Formation of In Situ Li3N-Rich SEI via Nanocomposite Plating of Mg3N2 with Lithium Enables High-Performance 3D Lithium-Metal Batteries [J].
Dong, Qingyuan ;
Hong, Bo ;
Fan, Hailin ;
Jiang, Huai ;
Zhang, Kai ;
Lai, Yanqing .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (01) :627-636
[7]   Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries [J].
Feng, Xiaoyu ;
Wu, Hong-Hui ;
Gao, Biao ;
Swietoslawski, Michal ;
He, Xin ;
Zhang, Qiaobao .
NANO RESEARCH, 2022, 15 (01) :352-360
[8]   Lithiophilic Co/Co4N nanoparticles embedded in hollow N-doped carbon nanocubes stabilizing lithium metal anodes for Li-air batteries [J].
Guo, Ziyang ;
Wang, Fengmei ;
Li, Zijian ;
Yang, Yu ;
Tamirat, Andebet Gedamu ;
Qi, Haocheng ;
Han, Jishu ;
Li, Wei ;
Wang, Lei ;
Feng, Shouhua .
JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (44) :22096-22105
[9]   A 2D Ultrathin Nanopatterned Interlayer to Suppress Lithium Dendrite Growth in High-Energy Lithium-Metal Anodes [J].
Han, Kyu Hyo ;
Seok, Jae Young ;
Kim, In Ho ;
Woo, Kyoohee ;
Kim, Jang Hwan ;
Yang, Geon Gug ;
Choi, Hee Jae ;
Kwon, Sin ;
Jung, Edwin Ino ;
Kim, Sang Ouk .
ADVANCED MATERIALS, 2022, 34 (34)
[10]   3D CoSe@C Aerogel as a Host for Dendrite-Free Lithium-Metal Anode and Efficient Sulfur Cathode in Li-S Full Cells [J].
He, Jiarui ;
Manthiram, Arumugam .
ADVANCED ENERGY MATERIALS, 2020, 10 (41)