Inducible Synthetic Growth Regulation Using the ClpXP Proteasome Enhances cis,cis-Muconic Acid and Glycolic Acid Yields in Saccharomyces cerevisiae

被引:2
作者
Kakko, Natalia [1 ,2 ]
Rantasalo, Anssi [1 ,3 ]
Koponen, Tino [1 ]
Vidgren, Virve [1 ]
Kannisto, Matti [1 ]
Maiorova, Natalia [1 ]
Nygren, Heli [1 ]
Mojzita, Dominik [1 ]
Penttila, Merja [1 ,2 ]
Jouhten, Paula [1 ,2 ]
机构
[1] VTT Tech Res Ctr Finland Ltd, Espoo 02044, Finland
[2] Aalto Univ, Sch Chem Engn, Dept Bioprod & Biosyst, FI-00076 Espoo, Finland
[3] EniferBio, Espoo, Finland
来源
ACS SYNTHETIC BIOLOGY | 2023年 / 12卷 / 04期
基金
芬兰科学院;
关键词
synthetic regulation; Saccharomyces cerevisiae; ClpXP proteasome; cis; cis-muconic acid; glycolic acid; METABOLIC PATHWAY; ESCHERICHIA-COLI; ETHYLENE-GLYCOL; BIOSYNTHESIS; IDENTIFICATION; INTEGRATION; SECRETION; PROTEOME; TOOLKIT; MODELS;
D O I
10.1021/acssynbio.2c00467
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Engineered microbial cells can produce sustainable chemistry, but the production competes for resources with growth. Inducible synthetic control over the resource use would enable fast accumulation of sufficient biomass and then divert the resources to production. We developed inducible synthetic resource-use control overSaccharomyces cerevisiae by expressing a bacterial ClpXP proteasome from an inducible promoter. By individually targeting growth-essential metabolic enzymes Aro1, Hom3, and Acc1 to the ClpXP proteasome, cell growth could be efficiently repressed during cultivation. The ClpXP proteasome was specific to the target proteins, and there was no reduction in the targets when ClpXP was not induced. The inducible growth repression improved product yields from glucose (cis,cis-muconic acid) and per biomass (cis,cis-muconic acid and glycolic acid). The inducible ClpXP proteasome tackles uncertainties in strain optimization by enabling model-guided repression of competing, growth-essential, and metabolic enzymes. Most importantly, it allows improving production without compromising biomass accumulation when uninduced; therefore, it is expected to mitigate strain stability and low productivity challenges.
引用
收藏
页码:1021 / 1033
页数:13
相关论文
共 87 条
[1]  
Alam MT, 2016, NAT MICROBIOL, V1, DOI [10.1038/NMICROBIOL.2015.30, 10.1038/nmicrobiol.2015.30]
[2]  
[Anonymous], 2021, R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing
[3]   ClpXP, an ATP-powered unfolding and protein-degradation machine [J].
Baker, Tania A. ;
Sauer, Robert T. .
BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2012, 1823 (01) :15-28
[4]   Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin [J].
Becker, Judith ;
Kuhl, Martin ;
Kohlstedt, Michael ;
Starck, Soeren ;
Wittmann, Christoph .
MICROBIAL CELL FACTORIES, 2018, 17
[5]   An activator/repressor dual system allows tight tetracycline-regulated gene expression in budding yeast [J].
Bellí, G ;
Garí, E ;
Piedrafita, L ;
Aldea, N ;
Herrero, E .
NUCLEIC ACIDS RESEARCH, 1998, 26 (04) :942-947
[6]   Metabolic engineering of Yarrowia lipolytica for itaconic acid production [J].
Blazeck, John ;
Hill, Andrew ;
Jamoussi, Mariam ;
Pan, Anny ;
Miller, Jarrett ;
Alper, Hal S. .
METABOLIC ENGINEERING, 2015, 32 :66-73
[7]   Regulation of fungal secondary metabolism [J].
Brakhage, Axel A. .
NATURE REVIEWS MICROBIOLOGY, 2013, 11 (01) :21-32
[8]   Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast [J].
Brauer, Matthew J. ;
Huttenhower, Curtis ;
Airoldi, Edoardo M. ;
Rosenstein, Rachel ;
Matese, John C. ;
Gresham, David ;
Boer, Viktor M. ;
Troyanskaya, Olga G. ;
Botstein, David .
MOLECULAR BIOLOGY OF THE CELL, 2008, 19 (01) :352-367
[9]   An expanded enzyme toolbox for production of cis, cis-muconic acid and other shikimate pathway derivatives in Saccharomyces cerevisiae [J].
Brueckner, Christine ;
Oreb, Mislav ;
Kunze, Gotthard ;
Boles, Eckhard ;
Tripp, Joanna .
FEMS YEAST RESEARCH, 2018, 18 (02)
[10]   OptKnock: A bilevel programming framework for identifying gene knockout strategies for microbial strain optimization [J].
Burgard, AP ;
Pharkya, P ;
Maranas, CD .
BIOTECHNOLOGY AND BIOENGINEERING, 2003, 84 (06) :647-657