Tilorone increases glucose uptake in vivo and in skeletal muscle cells by enhancing Akt2/AS160 signaling and glucose transporter levels
被引:3
作者:
Kohler, Zoltan M.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, HungaryUniv Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, Hungary
Kohler, Zoltan M.
[1
]
Trencsenyi, Gyorgy
论文数: 0引用数: 0
h-index: 0
机构:
Univ Debrecen, Fac Med, Dept Med Imaging, Div Nucl Med & Translat Imaging, Debrecen, HungaryUniv Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, Hungary
Trencsenyi, Gyorgy
[2
]
Juhasz, Laszlo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Szeged, Inst Surg Res, Albert Szent Gyorgy Med Sch, Szeged, HungaryUniv Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, Hungary
Juhasz, Laszlo
[3
]
Zvara, Agnes
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Res Network, Lab Funct Genom, Biol Res Ctr, Szeged, HungaryUniv Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, Hungary
Zvara, Agnes
[4
]
Szabo, Judit P.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Debrecen, Fac Med, Dept Med Imaging, Div Nucl Med & Translat Imaging, Debrecen, HungaryUniv Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, Hungary
Szabo, Judit P.
[2
]
Dux, Laszlo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, HungaryUniv Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, Hungary
Dux, Laszlo
[1
]
Puskas, Laszlo G.
论文数: 0引用数: 0
h-index: 0
机构:
Eotvos Lorand Res Network, Lab Funct Genom, Biol Res Ctr, Szeged, HungaryUniv Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, Hungary
Puskas, Laszlo G.
[4
]
Rovo, Laszlo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Szeged, Dept Otorhinolaryngol & Head & Neck Surg, Szeged, HungaryUniv Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, Hungary
Rovo, Laszlo
[5
]
Keller-Pinter, Aniko
论文数: 0引用数: 0
h-index: 0
机构:
Univ Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, HungaryUniv Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, Hungary
Keller-Pinter, Aniko
[1
]
机构:
[1] Univ Szeged, Albert Szent Gyorgy Med Sch, Dept Biochem, Dom Sq 9, H-6720 Szeged, Hungary
[2] Univ Debrecen, Fac Med, Dept Med Imaging, Div Nucl Med & Translat Imaging, Debrecen, Hungary
[3] Univ Szeged, Inst Surg Res, Albert Szent Gyorgy Med Sch, Szeged, Hungary
[4] Eotvos Lorand Res Network, Lab Funct Genom, Biol Res Ctr, Szeged, Hungary
Skeletal muscle plays a major role in whole-body glucose metabolism. Insulin resistance in skeletal muscle is characterized by decreased insulin-stimulated glucose uptake resulting from impaired intracellular trafficking and decreased glucose transporter 4 (GLUT4) expression. In this study, we illustrated that tilorone, a low-molecular-weight antiviral agent, improves glucose uptake in vitro and in vivo. Tilorone increased bone morphogenetic protein (BMP) signaling in C2C12 myoblasts, the transcription of multiple BMPs (BMP2, BMP4, BMP7, and BMP14), Smad4 expression, and the phosphorylation of BMP-mediated Smad1/5/8. The activation of Akt2/AS160 (TBC1D4) signaling, the critical regulator of GLUT4 translocation, was also increased, as well as the levels of GLUT4 and GLUT1, leading to enhanced uptake of the radioactively labeled glucose analog F-18-fluoro-2-deoxyglucose ((18)FDG). However, this excess glucose content did not result in increased ATP formation by mitochondrial respiration; both basal and ATP-linked respiration were diminished, thereby contributing to the induction of AMPK. In differentiated myotubes, AS160 phosphorylation and (18)FDG uptake also increased. Moreover, tilorone administration further increased insulin-stimulated phosphorylation of Akt2 and glucose uptake of myotubes indicating an insulin-sensitizing effect. Importantly, during in vivo experiments, the systemic administration of tilorone resulted in increased (18)FDG uptake of skeletal muscle, liver, and adipose tissue in C57BL/6 mice. Our results provide new perspectives for the treatment of type 2 diabetes, which has a limited number of treatments that regulate protein expression or translocation.