ISOMORPHISM TESTING FOR GRAPHS EXCLUDING SMALL MINORS

被引:1
作者
Grohe, M. A. R. T. I. N. [1 ]
Neuen, D. A. N. I. E. L. [2 ]
Wiebking, D. A. N. I. E. L. [1 ]
机构
[1] Rhein Westfal TH Aachen, Aachen, Germany
[2] Simon Fraser Univ, Burnaby, BC V5A 1S6, Canada
关键词
graph isomorphism problem; excluded minors; structure of automorphism group; BOUNDED VALENCE; NUMBER;
D O I
10.1137/21M1401930
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that there is a graph isomorphism test running in time npolylog(h) on n-vertex graphs excluding some h-vertex graph as a minor. Previously known bounds were npoly(h) [I. N. Ponomarenko, J. Soviet Math., 55 (1991), pp. 1621--1643] and npolylog(n) [L. Babai, Proceedings of the 48th Annual ACM Symposium on Theory of Computing, 2016, pp. 684--697]. For the algorithm we combine recent advances in the group-theoretic graph isomorphism machinery with new graph -theoretic arguments.
引用
收藏
页码:238 / 272
页数:35
相关论文
共 38 条
  • [1] Babai L., 1983, 24th Annual Symposium on Foundations of Computer Science, P162, DOI 10.1109/SFCS.1983.10
  • [2] ON THE ORDERS OF PRIMITIVE GROUPS WITH RESTRICTED NON-ABELIAN COMPOSITION FACTORS
    BABAI, L
    CAMERON, PJ
    PALFY, PP
    [J]. JOURNAL OF ALGEBRA, 1982, 79 (01) : 161 - 168
  • [3] Babai L., 1981, LONDON MATH SOC LECT, V52, P1, DOI DOI 10.1017/CBO9780511662157.003
  • [4] Babai L., 1983, P 15 ANN ACM S THEOR, P171
  • [5] Graph Isomorphism in Quasipolynomial Time [Extended Abstract]
    Babai, Laszlo
    [J]. STOC'16: PROCEEDINGS OF THE 48TH ANNUAL ACM SIGACT SYMPOSIUM ON THEORY OF COMPUTING, 2016, : 684 - 697
  • [6] Tight Lower and Upper Bounds for the Complexity of Canonical Colour Refinement
    Berkholz, Christoph
    Bonsma, Paul
    Grohe, Martin
    [J]. THEORY OF COMPUTING SYSTEMS, 2017, 60 (04) : 581 - 614
  • [7] AN OPTIMAL LOWER BOUND ON THE NUMBER OF VARIABLES FOR GRAPH IDENTIFICATION
    CAI, JY
    FURER, M
    IMMERMAN, N
    [J]. COMBINATORICA, 1992, 12 (04) : 389 - 410
  • [8] Chen G., 2019, LECT COHERENT CONFIG
  • [9] Dixon J.D., 1996, Permutation Groups, V163, DOI DOI 10.1007/978-1-4612-0731-3
  • [10] Filotti I. S., 1980, P 12 ANN ACM S THEOR, P236