On the equivalence of certain quasi-Hermitian varieties

被引:1
|
作者
Aguglia, Angela [1 ,3 ]
Giuzzi, Luca [2 ]
机构
[1] Politecn Bari, Dipartimento Meccan Matemat & Management, Bari, Italy
[2] Univ Brescia, DICATAM, Brescia, Italy
[3] Politecn Bari, Dipartimento Meccan Matemat & Management, Via Orabona 4, I-70125 Bari, Italy
关键词
collineation; Hermitian variety; quasi-Hermitian variety; BUEKENHOUT-METZ UNITALS;
D O I
10.1002/jcd.21870
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
By Aguglia et al., new quasi-Hermitian varieties M alpha,beta ${{\rm{ {\mathcal M} }}}_{\alpha ,\beta }$ in PG(r,q2) $\text{PG}(r,{q}<^>{2})$ depending on a pair of parameters alpha,beta $\alpha ,\beta $ from the underlying field GF(q2) $\text{GF}({q}<^>{2})$ have been constructed. In the present paper we study the structure of the lines contained in M alpha,beta ${{\rm{ {\mathcal M} }}}_{\alpha ,\beta }$ and consequently determine the projective equivalence classes of such varieties for q $q$ odd and r=3 $r=3$. As a byproduct, we also prove that the collinearity graph of M alpha,beta ${{\rm{ {\mathcal M} }}}_{\alpha ,\beta }$ is connected with diameter 3 for q equivalent to 1(mod4) $q\equiv 1\,(\mathrm{mod}\,4)$.
引用
收藏
页码:124 / 138
页数:15
相关论文
共 50 条