Online Spatio-Temporal Learning in Deep Neural Networks

被引:29
作者
Bohnstingl, Thomas [1 ,2 ]
Wozniak, Stanislaw [1 ]
Pantazi, Angeliki [1 ]
Eleftheriou, Evangelos [1 ,3 ]
机构
[1] IBM Res Zurich, CH-8803 Ruschlikon, Switzerland
[2] Graz Univ Technol, Inst Theoret Comp Sci, A-8010 Graz, Austria
[3] Axelera AI, CH-8038 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
Neurons; Biology; Training; Heuristic algorithms; Approximation algorithms; Biological neural networks; Backpropagation; backpropagation through time (BPTT); online learning; real-time recurrent learning (RTRL); spiking neurons; BACKPROPAGATION;
D O I
10.1109/TNNLS.2022.3153985
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Biological neural networks are equipped with an inherent capability to continuously adapt through online learning. This aspect remains in stark contrast to learning with error backpropagation through time (BPTT) that involves offline computation of the gradients due to the need to unroll the network through time. Here, we present an alternative online learning algorithm framework for deep recurrent neural networks (RNNs) and spiking neural networks (SNNs), called online spatio-temporal learning (OSTL). It is based on insights from biology and proposes the clear separation of spatial and temporal gradient components. For shallow SNNs, OSTL is gradient equivalent to BPTT enabling for the first time online training of SNNs with BPTT-equivalent gradients. In addition, the proposed formulation unveils a class of SNN architectures trainable online at low time complexity. Moreover, we extend OSTL to a generic form, applicable to a wide range of network architectures, including networks comprising long short-term memory (LSTM) and gated recurrent units (GRUs). We demonstrate the operation of our algorithm framework on various tasks from language modeling to speech recognition and obtain results on par with the BPTT baselines.
引用
收藏
页码:8894 / 8908
页数:15
相关论文
共 37 条
[1]  
Bellec G, 2018, 32 C NEURAL INFORM P
[2]   A solution to the learning dilemma for recurrent networks of spiking neurons [J].
Bellec, Guillaume ;
Scherr, Franz ;
Subramoney, Anand ;
Hajek, Elias ;
Salaj, Darjan ;
Legenstein, Robert ;
Maass, Wolfgang .
NATURE COMMUNICATIONS, 2020, 11 (01)
[3]  
Benzing F, 2019, PR MACH LEARN RES, V97
[4]  
Bishop Christopher M., 2006, Pattern recognition and machine learning, DOI [10.1007/978-0-387-45528-0, DOI 10.1007/978-0-387-45528-0]
[5]  
Bohnstingl T., 2021, ARXIV211002743
[6]  
Boulanger-Lewandowski Nicolas., 2012, P 29 INT COFERENCE I, P1881
[7]  
Bradbury James., 2017, ICLR
[8]  
Garofolo J. S., 1993, PB91505065 NTIS
[9]   Eligibility Traces and Plasticity on Behavioral Time Scales: Experimental Support of NeoHebbian Three-Factor Learning Rules [J].
Gerstner, Wulfram ;
Lehmann, Marco ;
Liakoni, Vasiliki ;
Corneil, Dane ;
Brea, Johanni .
FRONTIERS IN NEURAL CIRCUITS, 2018, 12
[10]   LSTM: A Search Space Odyssey [J].
Greff, Klaus ;
Srivastava, Rupesh K. ;
Koutnik, Jan ;
Steunebrink, Bas R. ;
Schmidhuber, Juergen .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (10) :2222-2232