Synchronization a chaotic system with Quadratic terms using the contraction Method

被引:0
|
作者
Pabasteh, Marzieh [1 ]
Naderi, Bashir [1 ]
Zarei, Hassan [1 ]
机构
[1] Payame Noor Univ PNU, Dept Math, Tehran, Iran
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2024年 / 12卷 / 02期
关键词
Contraction theory; Chaos; Synchronization; CONTROLLER; DESIGN;
D O I
10.22034/cmde.2023.55987.2337
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, Synchronization and control methods are discussed as essential topics in science. The contraction method is an exciting method that has been studied for the synchronization of chaotic systems with known and unknown parameters. The controller and the dynamic parameter estimation are obtained using the contraction theory to prove the stability of the synchronization error and the low parameter estimation. The control scheme does not employ the Lyapunov method. For demonstrate the ability of the proposed method, we performed a numerical simulation and compared the result with the previous literature.
引用
收藏
页码:361 / 373
页数:13
相关论文
共 50 条
  • [1] Chaotic Synchronization and Secure Communication Using Contraction Theory
    Sharma, Bharat Bhushan
    Kar, Indra Narayan
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PROCEEDINGS, 2009, 5909 : 549 - 554
  • [2] Synchronization of Chaotic System with Uncertain Functions and Unknown Parameters Using Adaptive Poles Method
    Zhou, Aijun
    Ren, Guang
    Shao, Chengyong
    Liang, Yong
    2012 INTERNATIONAL WORKSHOP ON INFORMATION AND ELECTRONICS ENGINEERING, 2012, 29 : 2453 - 2457
  • [3] Synchronization and anti-synchronization of a novel fractional order chaotic system with a quadratic term
    Shen Zhangyi
    Wu Linli
    Zhang Yongxin
    Imani, Hashem
    INTERNATIONAL JOURNAL OF MODELLING AND SIMULATION, 2023, 43 (04) : 325 - 346
  • [4] Adaptive synchronization of fractional-order quadratic chaotic flows with nonhyperbolic equilibrium
    Mofid, Omid
    Mobayen, Saleh
    JOURNAL OF VIBRATION AND CONTROL, 2018, 24 (21) : 4971 - 4987
  • [5] Observer-based synchronization scheme for a class of chaotic systems using contraction theory
    Sharma, B. B.
    Kar, I. N.
    NONLINEAR DYNAMICS, 2011, 63 (03) : 429 - 445
  • [6] An adaptive synchronization of a chaotic system with unknown parameters
    Liu, Xiaoming
    Xiao, Zhicai
    Dong, Wang
    Lei, Junwei
    2009 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COMPUTATIONAL INTELLIGENCE, VOL I, PROCEEDINGS, 2009, : 309 - +
  • [7] Robust communication via chaotic synchronization based on contraction maps
    Zhou, CS
    Chen, TL
    PHYSICS LETTERS A, 1997, 225 (1-3) : 60 - 66
  • [8] Robust Guaranteed Synchronization for Chaotic Systems With Incremental Quadratic Constraints
    Wang, Xudong
    Wang, Guoqi
    Li, Zhe
    Wang, Yaonan
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2023, 70 (10) : 4092 - 4102
  • [10] Chaotic synchronization by the intermittent feedback method
    Huang, Tingwen
    Li, Chuandong
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 234 (04) : 1097 - 1104