A novel method based on fractional order Gegenbauer wavelet operational matrix for the solutions of the multi-term time-fractional telegraph equation of distributed order

被引:5
作者
Marasi, H. R. [1 ,2 ]
Derakhshan, M. H. [1 ]
Ghuraibawi, Amer A. [1 ]
Kumar, Pushpendra [3 ]
机构
[1] Univ Tabriz, Fac Math Stat & Comp Sci, Dept Appl Math, Tabriz, Iran
[2] Univ Tabriz, Res Dept Computat Algorithms & Math Models, Tabriz, Iran
[3] Univ Johannesburg, Inst Future Knowledge, POB 524, ZA-2006 Auckland Pk, South Africa
关键词
Fractional-order Gegenbauer wavelet; Distributed order; Legendre-Gauss quadrature; Telegraph equation; Tau method; DIFFERENCE-SCHEMES; DIFFUSION EQUATION; NUMERICAL-SOLUTION; SPECTRAL METHOD; APPROXIMATION; GALERKIN; MODEL;
D O I
10.1016/j.matcom.2023.11.004
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this article, we propose an effective scheme based on a combination of the Tau method and fractional -order Gegenbauer wavelets for solving the multi -term time -fractional differential equations of distributed order. First, we define fractional order Gegenbauer wavelets and then obtain operational matrices of these orthogonal functions. Applying the Legendre-Gauss quadrature for the integral term, we use function approximations obtained by the presented wavelets and the Tau method for the solution of the distributed -order multi -term time -fractional telegraph equation. The proposed method reduces the numerical solution of multi order timefractional equations to a system of algebraic equations. Then, the convergence analysis and error bounds of the proposed scheme are studied. Three illustrative examples are solved to justify the effectiveness of the proposed method compared with some previously published results.
引用
收藏
页码:405 / 424
页数:20
相关论文
共 55 条
  • [1] Identification of complex order-distributions
    Adams, J. L.
    Hartley, T. T.
    Lorenzo, C. F.
    [J]. JOURNAL OF VIBRATION AND CONTROL, 2008, 14 (9-10) : 1375 - 1388
  • [2] Improved Gegenbauer spectral tau algorithms for distributed-order time-fractional telegraph models in multi-dimensions
    Ahmed, Hoda F.
    Hashem, W. A.
    [J]. NUMERICAL ALGORITHMS, 2023, 93 (03) : 1013 - 1043
  • [3] Novel and accurate Gegenbauer spectral tau algorithms for distributed order nonlinear time-fractional telegraph models in multi-dimensions
    Ahmed, Hoda F.
    Hashem, W. A.
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 118
  • [4] A space-time spectral method for time-fractional Black-Scholes equation
    An, Xingyu
    Liu, Fawang
    Zheng, Minling
    Anh, Vo V.
    Turner, Ian W.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2021, 165 : 152 - 166
  • [5] On spectral polar fractional Laplacian
    Ansari, Alireza
    Derakhshan, Mohammad Hossein
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 206 : 636 - 663
  • [6] Distributed order fractional diffusion equation with fractional Laplacian in axisymmetric cylindrical configuration
    Ansari, Alireza
    Derakhshan, Mohammad Hossein
    Askari, Hassan
    [J]. COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2022, 113
  • [7] A generalized model for the uniaxial isothermal deformation of a viscoelastic body
    Atanackovic, TM
    [J]. ACTA MECHANICA, 2002, 159 (1-4) : 77 - 86
  • [8] A numerical scheme to solve a class of two-dimensional nonlinear time-fractional diffusion equations of distributed order
    Babaei, A.
    Jafari, H.
    Banihashemi, S.
    [J]. ENGINEERING WITH COMPUTERS, 2022, 38 (03) : 2169 - 2181
  • [9] Differentiation to fractional orders and the fractional telegraph equation
    Camargo, R. Figueiredo
    Chiacchio, Ary O.
    de Oliveira, E. Capelas
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (03)
  • [10] Caputo M., 1995, ANN U FERRARA SEZ 7, V41, P73, DOI [10.1007/BF02826009, DOI 10.1007/BF02826009]