Stability of Charge Density Waves in Electron-Phonon Systems

被引:1
作者
Miyao, Tadahiro [1 ]
机构
[1] Hokkaido Univ, Dept Math, Sapporo 0600810, Japan
基金
日本学术振兴会;
关键词
Charge density waves; Pirogov-Sinai theory; Many electron systems; Electron-phonon interactions; TEMPERATURE PHASE-DIAGRAMS; QUANTUM-LATTICE SYSTEMS; PERTURBATIONS;
D O I
10.1007/s10955-024-03250-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
With mathematical rigor, we demonstrate that electron-phonon interactions enhance the stability of charge density waves in low-temperature phases of many-electron systems. Our proof method involves an appropriate application of the Pirogov-Sinai theory to electron-phonon systems. Combining our findings with existing results, we obtain rigorous information regarding the low-temperature phase diagram for half-filled electron-phonon systems.
引用
收藏
页数:48
相关论文
共 25 条
[1]  
Arai A., 2022, Infinite-Dimensional Dirac Operators and Supersymmetric Quantum Fields, DOI [10.1007/978-981-19-5678-2, DOI 10.1007/978-981-19-5678-2]
[2]  
Arai A., 2018, Analysis on Fock Spaces and Mathematical Theory of Quantum Fields: An Introduction to Mathematical Analysis of Quantum Fields
[3]   The staggered charge-order phase of the extended Hubbard model in the atomic limit [J].
Borgs, C ;
Jedrzejewski, J ;
Kotecky, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (04) :733-747
[4]   Low temperature phase diagrams for quantum perturbations of classical spin systems [J].
Borgs, C ;
Kotecky, R ;
Ueltschi, D .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 181 (02) :409-446
[5]   Low temperature phase diagrams of fermionic lattice systems [J].
Borgs, C ;
Kotecky, R .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2000, 208 (03) :575-604
[6]  
Bratelli O., 1997, Operator Algebras and Quantum Statistical Mechanics II, DOI DOI 10.1007/978-3-662-03444-6
[7]  
Conway JB., 1985, COURSE FUNCTIONAL AN, DOI DOI 10.1007/978-1-4757-3828-5
[8]  
Datta N, 1996, HELV PHYS ACTA, V69, P752
[9]   Rigidity of interfaces in the Falicov-Kimball model [J].
Datta, N ;
Messager, A ;
Nachtergaele, B .
JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (1-2) :461-555
[10]   Low-temperature phase diagrams of quantum lattice systems .1. Stability for quantum perturbations of classical systems with finitely-many ground states [J].
Datta, N ;
Fernandez, R ;
Frohlich, J .
JOURNAL OF STATISTICAL PHYSICS, 1996, 84 (3-4) :455-534