Numerical simulation of hypersonic flat-plate boundary-layer blowing control

被引:3
作者
Li, Zongxian [1 ,2 ]
Liu, Meikuan [1 ]
Han, Guilai [1 ,2 ]
Wang, Dagao [1 ,2 ]
Jiang, Zonglin [1 ,2 ]
机构
[1] Inst Mech, Chinese Acad Sci, State Key Lab High Temp Gas Dynam, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Engn Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
FLOW-CONTROL; TRANSITION; STABILITY; INJECTION;
D O I
10.1063/5.0174498
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Air-blowing is one of the techniques for active flow control and thermal protection system of hypersonic vehicles. Introducing air into the hypersonic boundary layer alters the cross-sectional profile of the boundary layer, thereby influencing the boundary-layer transition. This study investigates the active air-blowing control effects on the hypersonic flat-plate boundary layer under various blowing mass flow rates and incoming Mach numbers by solving the Reynolds-averaged Navier-Stokes equations with the Langtry-Menter four-equation transitional shear stress transport model. The study examined alterations in the blowing boundary-layer profiles under two conditions: natural and bypass transition, induced by different blowing flow rates. Blowing significantly alters the sonic line and boundary-layer profile characteristics, triggering blowing oblique shock and causing alterations in the instability mechanisms of the two transition states. A higher Mach number intensifies compressibility effects, stabilizing the boundary layer and leading to an increase in the thickness of the blowing boundary layer and air film.
引用
收藏
页数:16
相关论文
共 52 条
[11]  
Demetriades A., 1974, Hypersonic Viscous Flow Over A Slander Cone. Part III
[12]   High-Speed Boundary-Layer Stability on a Cone with Localized Wall Heating or Cooling [J].
Fedorov, Alexander ;
Soudakov, Vitaly ;
Egorov, Ivan ;
Sidorenko, Andrey ;
Gromyko, Yury ;
Bountin, Dmitry ;
Polivanov, Pavel ;
Maslov, Anatoly .
AIAA JOURNAL, 2015, 53 (09) :2512-2524
[13]   Transition and Stability of High-Speed Boundary Layers [J].
Fedorov, Alexander .
ANNUAL REVIEW OF FLUID MECHANICS, VOL 43, 2011, 43 :79-95
[14]  
Fedorov V., 2014, AIAA Paper No. AIAA 2014-2498
[15]   Flow control of an oblique shock wave reflection with micro-ramp vortex generators: Effects of location and size [J].
Giepman, R. H. M. ;
Schrijer, F. F. J. ;
van Oudheusden, B. W. .
PHYSICS OF FLUIDS, 2014, 26 (06)
[16]   Recent advances in the shock wave/boundary layer interaction and its control in internal and external flows [J].
Huang, Wei ;
Wu, Han ;
Yang, Yan-guang ;
Yan, Li ;
Li, Shi-bin .
ACTA ASTRONAUTICA, 2020, 174 :103-122
[17]   Visualization of the structural response of a hypersonic turbulent boundary layer to convex curvature [J].
Humble, R. A. ;
Peltier, S. J. ;
Bowersox, R. D. W. .
PHYSICS OF FLUIDS, 2012, 24 (10)
[18]  
Jewell J., 2013, AIAA Paper No. 2013-0523
[19]  
Jewell J.S., 2014, Boundary-layer transition on a slender cone in hypervelocity flow with real gas effects
[20]   Hypersonic flow control of shock wave/turbulent boundary layer interactions using magnetohydrodynamic plasma actuators [J].
Jiang, Hao ;
Liu, Jun ;
Luo, Shi-chao ;
Wang, Jun-yuan ;
Huang, Wei .
JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2020, 21 (09) :745-760