Advanced Hydrogel-Based Strategies for Enhanced Bone and Cartilage Regeneration: A Comprehensive Review

被引:8
|
作者
De Leon-Oliva, Diego [1 ,2 ]
Boaru, Diego Liviu [1 ,2 ]
Perez-Exposito, Roque Emilio [1 ,3 ]
Fraile-Martinez, Oscar [1 ,2 ]
Garcia-Montero, Cielo [1 ,2 ]
Diaz, Raul [2 ,4 ]
Bujan, Julia [1 ,2 ]
Garcia-Honduvilla, Natalio [1 ,2 ]
Lopez-Gonzalez, Laura [1 ,2 ,4 ]
Alvarez-Mon, Melchor [1 ,2 ,5 ]
Saz, Jose V. [2 ,6 ]
de la Torre, Basilio [2 ,3 ,4 ]
Ortega, Miguel A. [1 ,2 ]
机构
[1] Univ Alcala, Fac Med & Hlth Sci, Dept Med & Med Special, Alcala De Henares 28801, Spain
[2] Ramon Y Cajal Inst Sanit Res IRYCIS, Madrid 28034, Spain
[3] Univ Hosp Ramon Y Cajal, Serv Traumatol, Madrid 28034, Spain
[4] Univ Alcala, Fac Med & Hlth Sci, Dept Surg Med & Social Sci, Alcala De Henares 28801, Spain
[5] Univ Hosp Principe Asturias, Immune Syst Dis Rheumatol Serv, Alcala De Henares 28801, Spain
[6] Univ Alcala, Fac Med & Hlth Sci, Dept Biomed & Biotechnol, Alcala De Henares 28801, Spain
关键词
tissue engineering and regenerative medicine (TERM); advanced hydrogels; bone regeneration; extracellular matrix (ECM); scaffolds; stem cells (SCs); MATRIX PROTEINS; REPAIR; OSTEOCYTE; FRACTURE; DELIVERY; CHITOSAN; SYSTEM; COMPOSITE; RELEASE; BURDEN;
D O I
10.3390/gels9110885
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Bone and cartilage tissue play multiple roles in the organism, including kinematic support, protection of organs, and hematopoiesis. Bone and, above all, cartilaginous tissues present an inherently limited capacity for self-regeneration. The increasing prevalence of disorders affecting these crucial tissues, such as bone fractures, bone metastases, osteoporosis, or osteoarthritis, underscores the urgent imperative to investigate therapeutic strategies capable of effectively addressing the challenges associated with their degeneration and damage. In this context, the emerging field of tissue engineering and regenerative medicine (TERM) has made important contributions through the development of advanced hydrogels. These crosslinked three-dimensional networks can retain substantial amounts of water, thus mimicking the natural extracellular matrix (ECM). Hydrogels exhibit exceptional biocompatibility, customizable mechanical properties, and the ability to encapsulate bioactive molecules and cells. In addition, they can be meticulously tailored to the specific needs of each patient, providing a promising alternative to conventional surgical procedures and reducing the risk of subsequent adverse reactions. However, some issues need to be addressed, such as lack of mechanical strength, inconsistent properties, and low-cell viability. This review describes the structure and regeneration of bone and cartilage tissue. Then, we present an overview of hydrogels, including their classification, synthesis, and biomedical applications. Following this, we review the most relevant and recent advanced hydrogels in TERM for bone and cartilage tissue regeneration.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Hydrogel-Based 3D Bioprinting Technology for Articular Cartilage Regenerative Engineering
    Zhang, Hongji
    Zhou, Zheyuan
    Zhang, Fengjie
    Wan, Chao
    GELS, 2024, 10 (07)
  • [32] Photoresponsive hydrogel-based soft robot: A review
    Jiang, Jingang
    Xu, Shuainan
    Ma, Hongyuan
    Li, Changpeng
    Huang, Zhiyuan
    MATERIALS TODAY BIO, 2023, 20
  • [33] Subchondral bone-inspired hydrogel scaffold for cartilage regeneration
    Guo, Chuan
    Cao, Zhenxing
    Peng, Yan
    Wu, Rui
    Xu, Hu
    Yuan, Zhaoyang
    Xiong, Hui
    Wang, Yu
    Wu, Ye
    Li, Weilong
    Kong, Qingquan
    Wang, Yi
    Wu, Jinrong
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2022, 218
  • [34] Hydrogel-Based Platforms for the Regeneration of Osteochondral Tissue and Intervertebral Disc
    Guarino, Vincenzo
    Gloria, Antonio
    Raucci, Maria Grazia
    Ambrosio, Luigi
    POLYMERS, 2012, 4 (03) : 1590 - 1612
  • [35] Smart Hydrogel-Based Mechanical Metamaterials: A Review
    Pruksawan, Sirawit
    Chua, Zhan Au
    Chong, Yi Ting
    Loh, Terence Jun En
    Ng, Evelyn Ling Ling
    Wang, FuKe
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (20): : 12362 - 12381
  • [36] Applications of Hydrogel with Special Physical Properties in Bone and Cartilage Regeneration
    Lin, Hua
    Yin, Cuilan
    Mo, Anchun
    Hong, Guang
    MATERIALS, 2021, 14 (01) : 1 - 20
  • [37] Bone Regeneration: A Review of Current Treatment Strategies
    De Pace, Raffaella
    Molinari, Silvia
    Mazzoni, Elisa
    Perale, Giuseppe
    JOURNAL OF CLINICAL MEDICINE, 2025, 14 (06)
  • [38] Emerging trends in the application of hydrogel-based biomaterials for enhanced wound healing: A literature review
    Wang, Peng
    Cai, Feiyu
    Li, Yu
    Yang, Xuekang
    Feng, Rongqin
    Lu, He
    Bai, Xiaozhi
    Han, Juntao
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 261
  • [39] Stem Cell-Laden Hydrogel-Based 3D Bioprinting for Bone and Cartilage Tissue Engineering
    Yang, Zhimin
    Yi, Ping
    Liu, Zhongyue
    Zhang, Wenchao
    Mei, Lin
    Feng, Chengyao
    Tu, Chao
    Li, Zhihong
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [40] Multifunctional injectable protein -based hydrogel for bone regeneration
    Liu, Wenjuan
    Sun, Jian
    Sun, Yang
    Xiang, Yi
    Yan, Yufei
    Han, Zhihui
    Bi, Wei
    Yang, Fei
    Zhou, Qianrong
    Wang, Lei
    Yu, Youcheng
    CHEMICAL ENGINEERING JOURNAL, 2020, 394 (394)