Advanced Hydrogel-Based Strategies for Enhanced Bone and Cartilage Regeneration: A Comprehensive Review

被引:8
|
作者
De Leon-Oliva, Diego [1 ,2 ]
Boaru, Diego Liviu [1 ,2 ]
Perez-Exposito, Roque Emilio [1 ,3 ]
Fraile-Martinez, Oscar [1 ,2 ]
Garcia-Montero, Cielo [1 ,2 ]
Diaz, Raul [2 ,4 ]
Bujan, Julia [1 ,2 ]
Garcia-Honduvilla, Natalio [1 ,2 ]
Lopez-Gonzalez, Laura [1 ,2 ,4 ]
Alvarez-Mon, Melchor [1 ,2 ,5 ]
Saz, Jose V. [2 ,6 ]
de la Torre, Basilio [2 ,3 ,4 ]
Ortega, Miguel A. [1 ,2 ]
机构
[1] Univ Alcala, Fac Med & Hlth Sci, Dept Med & Med Special, Alcala De Henares 28801, Spain
[2] Ramon Y Cajal Inst Sanit Res IRYCIS, Madrid 28034, Spain
[3] Univ Hosp Ramon Y Cajal, Serv Traumatol, Madrid 28034, Spain
[4] Univ Alcala, Fac Med & Hlth Sci, Dept Surg Med & Social Sci, Alcala De Henares 28801, Spain
[5] Univ Hosp Principe Asturias, Immune Syst Dis Rheumatol Serv, Alcala De Henares 28801, Spain
[6] Univ Alcala, Fac Med & Hlth Sci, Dept Biomed & Biotechnol, Alcala De Henares 28801, Spain
关键词
tissue engineering and regenerative medicine (TERM); advanced hydrogels; bone regeneration; extracellular matrix (ECM); scaffolds; stem cells (SCs); MATRIX PROTEINS; REPAIR; OSTEOCYTE; FRACTURE; DELIVERY; CHITOSAN; SYSTEM; COMPOSITE; RELEASE; BURDEN;
D O I
10.3390/gels9110885
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Bone and cartilage tissue play multiple roles in the organism, including kinematic support, protection of organs, and hematopoiesis. Bone and, above all, cartilaginous tissues present an inherently limited capacity for self-regeneration. The increasing prevalence of disorders affecting these crucial tissues, such as bone fractures, bone metastases, osteoporosis, or osteoarthritis, underscores the urgent imperative to investigate therapeutic strategies capable of effectively addressing the challenges associated with their degeneration and damage. In this context, the emerging field of tissue engineering and regenerative medicine (TERM) has made important contributions through the development of advanced hydrogels. These crosslinked three-dimensional networks can retain substantial amounts of water, thus mimicking the natural extracellular matrix (ECM). Hydrogels exhibit exceptional biocompatibility, customizable mechanical properties, and the ability to encapsulate bioactive molecules and cells. In addition, they can be meticulously tailored to the specific needs of each patient, providing a promising alternative to conventional surgical procedures and reducing the risk of subsequent adverse reactions. However, some issues need to be addressed, such as lack of mechanical strength, inconsistent properties, and low-cell viability. This review describes the structure and regeneration of bone and cartilage tissue. Then, we present an overview of hydrogels, including their classification, synthesis, and biomedical applications. Following this, we review the most relevant and recent advanced hydrogels in TERM for bone and cartilage tissue regeneration.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Enhancing bone tissue regeneration: a review synergistic hydrogel approach for comprehensive bone repair
    Kolly, Febrianti Mahrani
    Rauf, Nurlaela
    Tahir, Dahlang
    POLYMER BULLETIN, 2024, 81 (12) : 10561 - 10587
  • [22] Hydrogel-Based Biomaterial as a Scaffold for Gingival Regeneration: A Systematic Review of In Vitro Studies
    Hutomo, Dimas Ilham
    Amir, Lisa
    Suniarti, Dewi Fatma
    Bachtiar, Endang Winiati
    Soeroso, Yuniarti
    POLYMERS, 2023, 15 (12)
  • [23] Hydrogel-Based Systems in Neuro-Vascularized Bone Regeneration: A Promising Therapeutic Strategy
    Li, Xiaojing
    Cui, Ya
    He, Xiaoya
    Mao, Lixia
    MACROMOLECULAR BIOSCIENCE, 2024, 24 (05)
  • [24] Review on Hydrogel-Based Flexible Supercapacitors for Wearable Applications
    Tadesse, Melkie Getnet
    Luebben, Joern Felix
    GELS, 2023, 9 (02)
  • [25] Hydrogel-based immunoregulation of macrophages for tissue repair and regeneration
    Nie, Rong
    Zhang, Qing-Yi
    Feng, Zi-Yuan
    Huang, Kai
    Zou, Chen -Yu
    Fan, Ming -Hui
    Zhang, Yue-Qi
    Zhang, Ji-Ye
    Li-Ling, Jesse
    Tan, Bo
    Xie, Hui-Qi
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 268
  • [26] Advances in photocrosslinked natural hydrogel-based microspheres for bone repair
    Li, Hao-Ru
    Zhou, Jing
    Zhou, Yan-Wen
    Dao, Jin-Wei
    Wei, Dai-Xu
    Wang, Yong
    JOURNAL OF POLYMER SCIENCE, 2024, 62 (22) : 4966 - 4992
  • [27] Biofunctionalization of hydrogel-based scaffolds for vascular tissue regeneration
    Lopez-Gutierrez, Jorge
    Ramos-Payan, Rosalio
    Ayala-Ham, Alfredo
    Geovanni Romero-Quintana, Jose
    Castillo-Ureta, Hipolito
    Villegas-Mercado, Carlos
    Bermudez, Mercedes
    Sanchez-Schmitz, Guzman
    Aguilar-Medina, Maribel
    FRONTIERS IN MATERIALS, 2023, 10
  • [28] Recent Progress in Self-Healable Hydrogel-Based Electroluminescent Devices: A Comprehensive Review
    Tadesse, Melkie Getnet
    Luebben, Joern Felix
    GELS, 2023, 9 (03)
  • [29] Advances of natural hydrogel-based vascularization strategies for soft tissue repair
    Xia, Zhuoheng
    Guo, Bin
    Wu, Danni
    Yang, Fan
    Ding, Yude
    FRONTIERS IN MATERIALS, 2024, 11
  • [30] Hydrogel-based Treatment Strategies to Accelerate Diabetic Foot Ulcer Healing
    Mehta, Sadgi
    Wadhwa, Sheetu
    Nayak, Sammisla R.
    Kumar, Rajesh
    CURRENT DIABETES REVIEWS, 2023, 19 (08) : 70 - 83