Skyrmions in van der Waals centrosymmetric materials with Dzyaloshinskii-Moriya interactions

被引:1
|
作者
Tran, Hung Ba [1 ,2 ]
Matsushita, Yu-ichiro [1 ,2 ,3 ]
机构
[1] Tokyo Inst Technol, Inst Innovat Res, Lab Mat & Struct, 4259 Nagatsutacho,Midori Ku, Yokohama 2268503, Japan
[2] Quemix Inc, 2-11-2 Nihonbashi,Chuo Ku, Tokyo 1030027, Japan
[3] Natl Inst Quantum Sci & Technol, Quantum Mat & Applicat Res Ctr, 2-12-1 Ookayama,Meguro Ku, Tokyo 1528552, Japan
关键词
Skyrmions and meron; Van der Waals centrosymmetric materials; Dzyaloshinskii-Moriya interactions; Magnetic phase diagram;
D O I
10.1016/j.scriptamat.2023.115799
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Skyrmions can appear in non-centrosymmetric materials because of non-vanishing Dzyaloshinskii-Moriya interactions (DMIs). We investigate the magnetic properties of rhombohedral MX3 (M: V, Cr, Mn, Fe; X: Cl, Br, I) van der Waals materials with centrosymmetric lattices by combining first-principle calculations and Monte Carlo simulations. We determine that the Dzyaloshinskii-Moriya vector acting between the second nearest neighbor sites of the intralayer is non-zero and large in MX3, owing to the breaking of the local inversion symmetry. Large DMIs cause nanoscale magnetic vortices, i.e. that is, skyrmions. We observe both conventional skyrmions in CrCl3 and VCl3 and antiferromagnetic skyrmions in FeCl3 and merons in MnCl3. Furthermore, the skyrmions in CrCl3 and VCl3 have different helicities, indicating the possibility of controlling the helicity by electron/hole doping in MX3 materials. Van der Waals materials have high degrees of freedom in heterostructures and twisted structures, demonstrating promising potential as skyrmion materials.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Interlayer Dzyaloshinskii-Moriya interactions induced via nonlinear phononics in bilayer van der Waals materials
    Lin, Ze-Xun
    Ma, Bowen
    Roberts, Wesley
    Rodriguez-Vega, Martin
    Fiete, Gregory A.
    PHYSICAL REVIEW B, 2025, 111 (11)
  • [2] Dzyaloshinskii-Moriya interaction torques and domain wall dynamics in van der Waals heterostructures
    Chen, Jun
    Gui, Churen
    Dong, Shuai
    PHYSICAL REVIEW B, 2024, 110 (06)
  • [3] Modifying the Dzyaloshinskii-Moriya Interaction via Disruption of Ordered Intercalation in a van der Waals Magnet
    Liu, Yangrui
    Zhang, Jianxiong
    Liu, Ying
    Dan, Jiadong
    Wang, Luyang
    Liu, Wei
    Zhang, Lei
    Zheng, Fengshan
    Du, Haifeng
    Ge, Binghui
    Zhao, Jin-Zhu
    Song, Dongsheng
    NANO LETTERS, 2025, 25 (11) : 4621 - 4627
  • [4] Phenomenology of chiral Dzyaloshinskii-Moriya interactions in strained materials
    Kitchaev, Daniil A.
    Beyerlein, Irene J.
    Van der Ven, Anton
    PHYSICAL REVIEW B, 2018, 98 (21)
  • [5] Dzyaloshinskii-Moriya interaction and magnetic skyrmions induced by curvature
    Ga, Yonglong
    Cui, Qirui
    Liang, Jinghua
    Yu, Dongxing
    Zhu, Yingmei
    Wang, Liming
    Yang, Hongxin
    PHYSICAL REVIEW B, 2022, 106 (05)
  • [6] Interlayer Dzyaloshinskii-Moriya Interactions
    Vedmedenko, Elena Y.
    Riego, Patricia
    Ander Arregi, Jon
    Berger, Andreas
    PHYSICAL REVIEW LETTERS, 2019, 122 (25)
  • [7] Skyrmions Subtractor Based on Dzyaloshinskii-Moriya Interaction Gate
    Cai, Na
    Liu, Yan
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2024, 15 (30): : 7775 - 7781
  • [8] Anatomy of Hidden Dzyaloshinskii-Moriya Interactions and Topological Spin Textures in Centrosymmetric Crystals
    Cui, Qirui
    Zhu, Yingmei
    Jiang, Jiawei
    Cui, Ping
    Yang, Hongxin
    Chang, Kai
    Wang, Kaiyou
    NANO LETTERS, 2024, 24 (24) : 7358 - 7365
  • [9] Controlling Dzyaloshinskii-Moriya interaction in a centrosymmetric nonsymmorphic crystal
    Zhang, Zhongyi
    Qin, Shengshan
    Zang, Jiadong
    Fang, Chen
    Hu, Jiangping
    Zhang, Fu-Chun
    SCIENCE BULLETIN, 2023, 68 (11) : 1113 - 1118
  • [10] Elongation of skyrmions by Dzyaloshinskii-Moriya interaction in helimagnetic films
    Dai, Ying-Ying
    Wang, Han
    Yang, Teng
    Adeyeye, Adekunle O.
    Zhang, Zhi-Dong
    RARE METALS, 2022, 41 (09) : 3150 - 3159