Maximum Likelihood Estimation in Mixed Integer Linear Models

被引:0
作者
Tucker, David [1 ]
Zhao, Shen [2 ]
Potter, Lee C. [1 ]
机构
[1] Ohio State Univ, Dept Elect & Comp Engn, Columbus, OH 43210 USA
[2] Stanford Univ, Dept Med, Div Cardiovasc Med, Stanford, CA 94304 USA
关键词
Lattices; Maximum likelihood estimation; Maximum likelihood decoding; Direction-of-arrival estimation; Task analysis; Planar arrays; Noise measurement; Phase unwrapping; sphere decoding; lattices; Hermite normal form; Chinese remainder theorem; PHASE; REDUCTION; PERFORMANCE; ALGORITHMS; FREQUENCY; AMBIGUITY; SEARCH; DESIGN;
D O I
10.1109/LSP.2023.3324833
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We consider the maximum likelihood (ML) parameter estimation problem for mixed integer linear models with arbitrary noise covariance. This problem appears in applications such as single frequency estimation, phase contrast imaging, and direction of arrival (DoA) estimation. Parameter estimates are found by solving a closest lattice point problem, which requires a lattice basis. In this letter, we present a lattice basis construction for ML parameter estimation and conclude with simulated results from DoA estimation and phase contrast imaging.
引用
收藏
页码:1557 / 1561
页数:5
相关论文
共 52 条
[11]  
Cohen H., 1993, COURSE COMPUTATIONAL, V138, DOI 10.1007/978-3-662-02945-9
[12]   On maximum-likelihood detection and the search for the closest lattice point [J].
Damen, MO ;
El Gamal, H ;
Caire, G .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (10) :2389-2402
[13]   Lattice coding and decoding achieve the optimal diversity-multiplexing tradeoff of MIMO channels [J].
El Gamal, H ;
Caire, G ;
Damen, MO .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (06) :968-985
[14]  
Gan L., 2020, P IEEE 11 SENS ARR M, P1
[15]   Faster Recursions in Sphere Decoding [J].
Ghasemmehdi, Arash ;
Agrell, Erik .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (06) :3530-3536
[16]   Chinese remaindering with errors [J].
Goldreich, O ;
Ron, D ;
Sudan, M .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (04) :1330-1338
[17]  
Hassibi A, 1998, IEEE T SIGNAL PROCES, V46, P2938, DOI 10.1109/78.726808
[18]   On the sphere-decoding algorithm I. Expected complexity [J].
Hassibi, B ;
Vikalo, H .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (08) :2806-2818
[19]   An improved interferometer design for use with meteor radars [J].
Jones, J ;
Webster, AR ;
Hocking, WK .
RADIO SCIENCE, 1998, 33 (01) :55-65
[20]   FACTORING POLYNOMIALS WITH RATIONAL COEFFICIENTS [J].
LENSTRA, AK ;
LENSTRA, HW ;
LOVASZ, L .
MATHEMATISCHE ANNALEN, 1982, 261 (04) :515-534