Monolithic integration and ferroelectric phase evolution of hafnium zirconium oxide in 2D neuromorphic synaptic devices

被引:3
作者
Sarney, W. L. [1 ]
Glasmann, A. L. [1 ]
Pearson, J. S. [1 ,2 ]
McGinn, C. K. [3 ]
Litwin, P. M. [4 ]
Bisht, R. S.
Ramanathan, S. [5 ]
McDonnell, S. J.
Hacker, C. A. [3 ]
Najmaei, S. [1 ]
机构
[1] DEVCOM Army Res Lab, Army Res Directorate, Adelphi, MD 20783 USA
[2] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
[3] NIST, Gaithersburg, MD 20899 USA
[4] Univ Virginia, Dept Mat Sci & Engn, Charlottesville, VA 22904 USA
[5] Rutgers State Univ, Dept Elect & Comp Engn, Piscataway, NJ 08854 USA
关键词
Two-dimensional semiconductor materials; Ferroelectric hafnia; FeFET; Neuromorphic devices; BEOL; HFO2; SIMULATION; FILMS; ZRO2;
D O I
10.1016/j.mtnano.2023.100378
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hafnium zirconium oxide (HZO)-based ferroelectric field-effect transistors (FeFETs) are three-terminal devices with attractive properties for embedded memory and in-memory computing architectures. We probe the HZO ferroelectric landscape dynamics with materials characterization, device modeling, and electrical measurements. Metal-ferroelectric-metal capacitors fabricated with HZO with Pt contacts were processed at complementary metal-oxide-semiconductor (CMOS)-compatible temperatures near 450 degrees C. We found that the HZO films do not require field processing for ferroelectricity to arise and have an average remnant polarization between 10 and 20 mu C/cm(2) and a coercive field of similar to 0.6 MV/cm. The average HZO grain sizes range from 10 to 15 nm and closely follow the ferroelectric domain size range of 10-20 nm. We further examine the HZO properties by integrating them into back-end-of-the-line (BEOL) FeFET device architectures with WSe2, a prototypical van der Waals system, and verify their robust synaptic plasticity within a 3.5 order of magnitude conductive range. These discoveries highlight a roadmap for material processing, dimensional scaling, and integration of HZO-based FeFETs.
引用
收藏
页数:10
相关论文
共 46 条
[41]   Comprehensive Study on the Kinetic Formation of the Orthorhombic Ferroelectric Phase in Epitaxial Y-Doped Ferroelectric HfO2 Thin Films [J].
Tashiro, Yuki ;
Shimizu, Takao ;
Mimura, Takanori ;
Funakubo, Hiroshi .
ACS APPLIED ELECTRONIC MATERIALS, 2021, 3 (07) :3123-3130
[42]   A Compact Model of Nanoscale Ferroelectric Capacitor [J].
Tung, Chien-Ting ;
Pahwa, Girish ;
Salahuddin, Sayeef ;
Hu, Chenming .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (08) :4761-4764
[43]   A rhombohedral ferroelectric phase in epitaxially strained Hf0.5Zr0.5O2 thin films [J].
Wei, Yingfen ;
Nukala, Pavan ;
Salverda, Mart ;
Matzen, Sylvia ;
Zhao, Hong Jian ;
Momand, Jamo ;
Everhardt, Arnoud S. ;
Agnus, Guillaume ;
Blake, Graeme R. ;
Lecoeur, Philippe ;
Kooi, Bart J. ;
Iniguez, Jorge ;
Dkhil, Brahim ;
Noheda, Beatriz .
NATURE MATERIALS, 2018, 17 (12) :1095-+
[44]   Memory leads the way to better computing [J].
Wong, H. -S. Philip ;
Salahuddin, Sayeef .
NATURE NANOTECHNOLOGY, 2015, 10 (03) :191-194
[45]   Kinetically stabilized ferroelectricity in bulk single-crystalline HfO2:Y [J].
Xu, Xianghan ;
Huang, Fei-Ting ;
Qi, Yubo ;
Singh, Sobhit ;
Rabe, Karin M. ;
Obeysekera, Dimuthu ;
Yang, Junjie ;
Chu, Ming-Wen ;
Cheong, Sang-Wook .
NATURE MATERIALS, 2021, 20 (06) :826-+
[46]   Large-Scale Hf0.5Zr0.5O2 Membranes with Robust Ferroelectricity [J].
Zhong, Hai ;
Li, Mingqiang ;
Zhang, Qinghua ;
Yang, Lihong ;
He, Ri ;
Liu, Fang ;
Liu, Zhuohui ;
Li, Ge ;
Sun, Qinchao ;
Xie, Donggang ;
Meng, Fanqi ;
Li, Qiang ;
He, Meng ;
Guo, Er-Jia ;
Wang, Can ;
Zhong, Zhicheng ;
Wang, Xinqiang ;
Gu, Lin ;
Yang, Guozhen ;
Jin, Kuijuan ;
Gao, Peng ;
Ge, Chen .
ADVANCED MATERIALS, 2022, 34 (24)