AMFF-Net: An attention-based multi-scale feature fusion network for allergic pollen detection

被引:3
作者
Li, Jianqiang [1 ]
Wang, Quanzeng [1 ]
Xiong, Chengyao [1 ]
Zhao, Linna [1 ]
Cheng, Wenxiu [1 ]
Xu, Xi [1 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing Engn Res Ctr IoT Software & Syst, Beijing 100124, Peoples R China
关键词
Pollen detection; Multi-scale feature fusion; Attention mechanism; Light microscope images; CLASSIFICATION; GRAINS; MICROSCOPY;
D O I
10.1016/j.eswa.2023.121158
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic pollen detection based on light microscope (LM) images is helpful for pollinosis symptoms prevention. Recently, many deep learning methods have been proposed to identify pollen grains based on multi-scale feature fusion mechanism. However, in real scenarios, there are two main challenges that need to be considered: (1) Complex pollen characteristics; (2) Irrelevant objects interference. It means that the pollen detection requires not only learning the relationship among multi-scale features but also refining the feature representation. To this end, this paper proposes an attention-based multi-scale feature fusion network (AMFF-Net) for automatic pollen detection on real-world LM images. The proposed AMFF-Net includes three modules: The feature extraction module utilizes the series-connection attention to capture the spatial and channel dependencies of different level feature maps (for solving the challenge 1). In the feature fusion module, a parallel connection attention is able to learn more discriminative feature representation based on bidirectional pathway guidance (for solving the challenge 2). Both are jointly adopted to enhance the representational capacity of the final results in the pollen prediction module. Extensive experiments are conducted on the real-world RPD dataset, and our AMFF-Net achieves the best performance (83.9% of mean average precision) comparing with other state-of-the-art methods. We believe that this work can serve as an important reference for the development of pollen monitoring system in a real scenario.
引用
收藏
页数:10
相关论文
共 46 条
[1]   Projected Carbon Dioxide to Increase Grass Pollen and Allergen Exposure Despite Higher Ozone Levels [J].
Albertine, Jennifer M. ;
Manning, William J. ;
DaCosta, Michelle ;
Stinson, Kristina A. ;
Muilenberg, Michael L. ;
Rogers, Christine A. .
PLOS ONE, 2014, 9 (11)
[2]   Detection and Classification of Pollen Grain Microscope Images [J].
Battiato, Sebastiano ;
Ortis, Alessandro ;
Trenta, Francesca ;
Ascari, Lorenzo ;
Politi, Mara ;
Siniscalco, Consolata .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2020), 2020, :4220-4227
[3]   Global Allergy Forum and 3rd Davos Declaration 2015: Atopic dermatitis/Eczema: challenges and opportunities toward precision medicine [J].
Bieber, T. ;
Akdis, C. ;
Lauener, R. ;
Traidl-Hoffmann, C. ;
Schmid-Grendelmeier, P. ;
Schaeppi, G. ;
Allam, J. -P. ;
Apfelbacher, C. ;
Augustin, M. ;
Beck, L. ;
Biedermann, T. ;
Braun-Fahrlander, C. ;
Chew, F. T. ;
Clavel, T. ;
Crameri, R. ;
Darsow, U. ;
Deleuran, M. ;
Dittlein, D. ;
Duchna, H. -W. ;
Eichenfeld, L. ;
Eyerich, K. ;
Frei, R. ;
Gelmetti, C. ;
Gieler, U. ;
Gilles, S. ;
Glatz, M. ;
Grando, K. ;
Green, J. ;
Gutermuth, J. ;
Guttman-Yassky, E. ;
Hanifin, J. ;
Hijnen, D. ;
Hoetzenecker, W. ;
Irvine, A. ;
Kalweit, A. ;
Katoh, N. ;
Knol, E. ;
Koren, H. ;
Mohrenschlager, M. ;
Muench, D. ;
Novak, N. ;
O'Mahony, L. ;
Paller, A. S. ;
Rhyner, C. ;
Roduit, C. ;
Schiesser, K. ;
Schroeder, J. ;
Simon, D. ;
Simon, H. -U. ;
Sokolowska, M. .
ALLERGY, 2016, 71 (05) :588-592
[4]   Pollen and spore monitoring in the world [J].
Buters, J. T. M. ;
Antunes, C. ;
Galveias, A. ;
Bergmann, K. C. ;
Thibaudon, M. ;
Galan, C. ;
Schmidt-Weber, C. ;
Oteros, J. .
CLINICAL AND TRANSLATIONAL ALLERGY, 2018, 8
[5]   Cascade R-CNN: Delving into High Quality Object Detection [J].
Cai, Zhaowei ;
Vasconcelos, Nuno .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6154-6162
[6]  
Cao N., 2020, Proceedings of the 2020 International Conference on Embedded Wireless Systems and Networks EWSN'20 (Junction Publishing), P108
[7]  
Carion Nicolas, 2020, Computer Vision - ECCV 2020. 16th European Conference. Proceedings. Lecture Notes in Computer Science (LNCS 12346), P213, DOI 10.1007/978-3-030-58452-8_13
[8]  
Chen K, 2019, Arxiv, DOI arXiv:1906.07155
[9]   Authentication of bee pollen grains in bright-field microscopy by combining one-class classification techniques and image processing [J].
Chica, Manuel .
MICROSCOPY RESEARCH AND TECHNIQUE, 2012, 75 (11) :1475-1485
[10]   A new approach to automated pollen analysis [J].
France, I ;
Duller, AWG ;
Duller, GAT ;
Lamb, HF .
QUATERNARY SCIENCE REVIEWS, 2000, 19 (06) :537-546