Network Narratives: Data Tours for Visual Network Exploration and Analysis

被引:1
作者
Li, Wenchao [1 ]
Schottler, Sarah [2 ]
Scott-Brown, James [2 ]
Wang, Yun [3 ]
Chen, Siming [4 ]
Qu, Huamin [1 ]
Bach, Benjamin [2 ]
机构
[1] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
[2] Univ Edinburgh, Edinburgh, Midlothian, Scotland
[3] Microsoft Res Asia, Beijing, Peoples R China
[4] Fudan Univ, Shanghai, Peoples R China
来源
PROCEEDINGS OF THE 2023 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI 2023) | 2023年
基金
英国工程与自然科学研究理事会;
关键词
Guided exploration; network visualization; VISUALIZATION; GUIDANCE; NAVIGATION; DESIGN;
D O I
10.1145/3544548.3581452
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces semi-automatic data tours to aid the exploration of complex networks. Exploring networks requires significant effort and expertise and can be time-consuming and challenging. Distinct from guidance and recommender systems for visual analytics, we provide a set of goal-oriented tours for network overview, ego-network analysis, community exploration, and other tasks. Based on interviews with five network analysts, we developed a user interface (NetworkNarratives) and 10 example tours. The interface allows analysts to navigate an interactive slideshow featuring facts about the network using visualizations and textual annotations. On each slide, an analyst can freely explore the network and specify nodes, links, or subgraphs as seed elements for follow-up tours. Two studies, comprising eight expert and 14 novice analysts, show that data tours reduce exploration effort, support learning about network exploration, and can aid the dissemination of analysis results. NetworkNarratives is available online, together with detailed illustrations for each tour.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] Egocentric Network Exploration for Immersive Analytics
    Sorger, J.
    Arleo, A.
    Kan, P.
    Knecht, W.
    Waldner, M.
    COMPUTER GRAPHICS FORUM, 2021, 40 (07) : 241 - 252
  • [22] Hermes: Guidance-enriched Visual Analytics for economic network exploration
    Leite, Roger A.
    Arleo, Alessio
    Sorger, Johannes
    Gschwandtner, Theresia
    Miksch, Silvia
    VISUAL INFORMATICS, 2020, 4 (04) : 11 - 22
  • [23] BiNA: A Visual Analytics Tool for Biological Network Data
    Gerasch, Andreas
    Faber, Daniel
    Kuentzer, Jan
    Niermann, Peter
    Kohlbacher, Oliver
    Lenhof, Hans-Peter
    Kaufmann, Michael
    PLOS ONE, 2014, 9 (02):
  • [24] NetLens: Iterative exploration of Content-Actor network data
    Kang, Hyunmo
    Plaisant, Catherine
    Lee, Bongshin
    Bederson, Benjamin B.
    VAST 2006: IEEE SYMPOSIUM ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY, PROCEEDINGS, 2006, : 91 - +
  • [25] Visual Analysis of Multimodal Movie Network Data Based on the Double-Layered View
    Tang, Ying
    Yu, Jia
    Li, Chen
    Fan, Jing
    INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2015,
  • [26] Orko: Facilitating Multimodal Interaction for Visual Exploration and Analysis of Networks
    Srinivasan, Arjun
    Stasko, John
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (01) : 511 - 521
  • [27] A Visual Analytics Framework for Contrastive Network Analysis
    Fujiwara, Takanori
    Zhao, Jian
    Chen, Francine
    Ma, Kwan-Liu
    2020 IEEE CONFERENCE ON VISUAL ANALYTICS SCIENCE AND TECHNOLOGY (VAST 2020), 2020, : 48 - 59
  • [28] Visual Analytics of Air Pollution Propagation Through Dynamic Network Analysis
    Ren, Ke
    Wu, Yiyao
    Zhang, Huijie
    Fu, Jia
    Qu, Dezhan
    Lin, Xiaoli
    IEEE ACCESS, 2020, 8 : 205289 - 205306
  • [29] TimeLighting: Guided Exploration of 2D Temporal Network Projections
    Filipov, Velitchko
    Ceneda, Davide
    Archambault, Daniel
    Arleo, Alessio
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2025, 31 (03) : 1932 - 1944
  • [30] Network Analysis for the Visualization and Analysis of Qualitative Data
    Pokorny, Jennifer J.
    Norman, Alex
    Zanesco, Anthony P.
    Bauer-Wu, Susan
    Sahdra, Baljinder K.
    Saron, Clifford D.
    PSYCHOLOGICAL METHODS, 2018, 23 (01) : 169 - 183