Upper Bound on the Regularity of the Lyapunov Exponent for Random Products of Matrices

被引:2
|
作者
Bezerra, Jamerson [1 ]
Duarte, Pedro [2 ]
机构
[1] Nicolaus Copernicus Univ, Fac Math & Comp Sci, Ul Chopina 12-18, PL-87100 Torun, Poland
[2] Univ Lisbon, Fac Ciencias, Campo Grande, P-1749016 Lisbon, Portugal
关键词
METRIC ENTROPY; DENSITY; CONTINUITY; DIMENSION; STATES;
D O I
10.1007/s00220-023-04815-5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove that if mu is a finitely supported measure on SL2(R) with positive Lyapunov exponent but not uniformly hyperbolic, then the Lyapunov exponent function is not alpha-Holder around mu for any alpha exceeding the Shannon entropy of mu over the Lyapunov exponent of mu.
引用
收藏
页码:829 / 875
页数:47
相关论文
共 50 条
  • [1] Upper Bound on the Regularity of the Lyapunov Exponent for Random Products of Matrices
    Jamerson Bezerra
    Pedro Duarte
    Communications in Mathematical Physics, 2023, 403 : 829 - 875
  • [2] LYAPUNOV EXPONENT FOR PRODUCTS OF MARKOVIAN RANDOM MATRICES
    CRISANTI, A
    PALADIN, G
    VULPIANI, A
    PHYSICAL REVIEW A, 1989, 39 (12): : 6491 - 6497
  • [3] EXACT LYAPUNOV EXPONENT FOR INFINITE PRODUCTS OF RANDOM MATRICES
    LIMA, R
    RAHIBE, M
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (10): : 3427 - 3437
  • [4] THE LYAPUNOV EXPONENT FOR PRODUCTS OF INFINITE-DIMENSIONAL RANDOM MATRICES
    DARLING, RWR
    LECTURE NOTES IN MATHEMATICS, 1991, 1486 : 206 - 215
  • [5] Lyapunov Exponent, Universality and Phase Transition for Products of Random Matrices
    Dang-Zheng Liu
    Dong Wang
    Yanhui Wang
    Communications in Mathematical Physics, 2023, 399 : 1811 - 1855
  • [6] Lyapunov Exponent, Universality and Phase Transition for Products of Random Matrices
    Liu, Dang-Zheng
    Wang, Dong
    Wang, Yanhui
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2023, 399 (03) : 1811 - 1855
  • [7] An upper bound for the largest Lyapunov exponent of a Markovian product of nonnegative matrices
    Gharavi, R
    Anantharam, V
    THEORETICAL COMPUTER SCIENCE, 2005, 332 (1-3) : 543 - 557
  • [8] An analytic estimate of the maximum Lyapunov exponent in products of tridiagonal random matrices
    Cecconi, F
    Politi, A
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1999, 32 (44): : 7603 - 7621
  • [9] The Lyapunov Exponent of Products of Random 2×2 Matrices Close to the Identity
    Alain Comtet
    Jean-Marc Luck
    Christophe Texier
    Yves Tourigny
    Journal of Statistical Physics, 2013, 150 : 13 - 65
  • [10] LYAPUNOV EXPONENT AND VARIANCE IN THE CLT FOR PRODUCTS OF RANDOM MATRICES RELATED TO RANDOM FIBONACCI SEQUENCES
    Majumdar, Rajeshwari
    Mariano, Phanuel
    Panzo, Hugo
    Peng, Lowen
    Sisti, Anthony
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (12): : 4779 - 4799