Tuning composite solid-state electrolyte interface to improve the electrochemical performance of lithium-oxygen battery

被引:30
作者
Ouyang, Hao [1 ]
Min, Shan [2 ]
Yi, Jin [2 ]
Liu, Xiaoyu [2 ]
Ning, Fanghua [2 ]
Qin, Jiaqian [3 ]
Jiang, Yong [1 ]
Zhao, Bing [1 ]
Zhang, Jiujun [2 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Inst Sustainable Energy, Coll Sci, Shanghai 200444, Peoples R China
[3] Chulalongkorn Univ, Met & Mat Sci Res Inst, Ctr Excellence Respons Wearable Mat, Bangkok 10330, Thailand
基金
中国国家自然科学基金;
关键词
Solid -state Li -O 2 battery; Composite electrolyte; Cathode interface; Room temperature; Succinonitrile; LI-O-2; BATTERIES; POLYMER ELECTROLYTE; CYCLE LIFE; LI2O2; SUCCINONITRILE; TEMPERATURE; SAFETY;
D O I
10.1016/j.gee.2022.01.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thin and flexible composite solid-state electrolyte (SSE) is considered to be a prospective candidate for lithium-oxygen (Li-O2) batteries with the aim to address the problems of unsatisfied safety, terrible durability as well as inferior electrochemical performance. Herein, in order to improve the safety and durability, a succinonitrile (SN) modified composite SSE is proposed. In this SSE, SN is introduced for eliminating the boundary between ceramic particles, increasing the amorphous region of polymer and ensuring fast ionic transport. Subsequently, the symmetric battery based on the proposed SSE achieves a long cycle life of 3000 h. Moreover, the elaborate cathode interface through the SN participation effectively reduces the barriers to the combination between lithium ions and electrons, facilitating the corresponding electrochemical reactions. As a result, the solid-state Li-O2 battery based on this SSE and tuned cathode interface achieves improved electrochemical performance including large specific capacity over 12,000 mAh g-1, enhanced rate capacity as well as stable cycle life of 54 cycles at room temperature. This ingenious design provides a new orientation for the evolution of solid-state Li-O2 batteries.& COPY; 2022 Institute of Process Engineering, Chinese Academy of Sciences. Publishing services by Elsevier B.V. on behalf of KeAi Communications Co., Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:1195 / 1204
页数:10
相关论文
共 38 条
[31]   A Unique Hybrid Quasi-Solid-State Electrolyte for Li-O2 Batteries with Improved Cycle Life and Safety [J].
Yi, Jin ;
Zhou, Haoshen .
CHEMSUSCHEM, 2016, 9 (17) :2391-2396
[32]   Interfacial construction of Li2O2 for a performance-improved polymer Li-O2 battery [J].
Yi, Jin ;
Wu, Shichao ;
Bai, Songyan ;
Liu, Yang ;
Li, Na ;
Zhou, Haoshen .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (07) :2403-2407
[33]   High-performance Li6.4La3Zr1.4Ta0.6O12/Poly(ethylene oxide)/Succinonitrile composite electrolyte for solid-state lithium batteries [J].
Zha, Wenping ;
Chen, Fei ;
Yang, Dunjie ;
Shen, Qiang ;
Zhang, Lianmeng .
JOURNAL OF POWER SOURCES, 2018, 397 :87-94
[34]   Safety-Reinforced Succinonitrile-Based Electrolyte with Interfacial Stability for High-Performance Lithium Batteries [J].
Zhang, Qingqing ;
Liu, Kai ;
Ding, Fei ;
Li, Wei ;
Liu, Xingjiang ;
Zhang, Jinli .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (35) :29820-29828
[35]   A durable and safe solid-state lithium battery with a hybrid electrolyte membrane [J].
Zhang, Wenqiang ;
Nie, Jinhui ;
Li, Fan ;
Wang, Zhong Lin ;
Sun, Chunwen .
NANO ENERGY, 2018, 45 :413-419
[36]   3D Porous Garnet/Gel Polymer Hybrid Electrolyte for Safe Solid-State Li-O2 Batteries with Long Lifetimes [J].
Zhao, Changtai ;
Sun, Qian ;
Luo, Jing ;
Liang, Jianneng ;
Liu, Yulong ;
Zhang, Lei ;
Wang, Jiwei ;
Deng, Sixu ;
Lin, Xiaoting ;
Yang, Xiaofei ;
Huang, Huan ;
Zhao, Shangqian ;
Zhang, Li ;
Lu, Shigang ;
Sun, Xueliang .
CHEMISTRY OF MATERIALS, 2020, 32 (23) :10113-10119
[37]   A Highly Efficient All-Solid-State Lithium/Electrolyte Interface Induced by an Energetic Reaction [J].
Zhong, Yiren ;
Xie, Yujun ;
Hwang, Sooyeon ;
Wang, Qian ;
Cha, Judy J. ;
Su, Dong ;
Wang, Hailiang .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (33) :14003-14008
[38]   Composite of a nonwoven fabric with poly(vinylidene fluoride) as a gel membrane of high safety for lithium ion battery [J].
Zhu, Yusong ;
Wang, Faxing ;
Liu, Lili ;
Xiao, Shiying ;
Chang, Zheng ;
Wu, Yuping .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (02) :618-624