Self-Guided Partial Graph Propagation for Incomplete Multiview Clustering

被引:22
作者
Liu, Cheng [1 ,2 ]
Li, Rui [1 ]
Wu, Si [3 ]
Che, Hangjun [4 ]
Jiang, Dazhi [1 ]
Yu, Zhiwen [3 ]
Wong, Hau-San [5 ]
机构
[1] Shantou Univ, Dept Comp Sci, Shantou 515063, Peoples R China
[2] Shantou Univ, Guangdong Prov Key Lab Infect Dis & Mol Immunopath, Shantou 515063, Peoples R China
[3] South China Univ Technol, Sch Comp Sci & Engn, Guangzhou 510641, Peoples R China
[4] Southwest Univ, Coll Elect & Informat Engn, Chongqing Key Lab Nonlinear Circuits & Intelligent, Chongqing 400715, Peoples R China
[5] City Univ Hong Kong, Dept Comp Sci, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Matrix decomposition; Indexes; Computer science; Task analysis; Silicon; Learning systems; Laplace equations; Graph propagation; incomplete multiview clustering (IMVC); FUSION;
D O I
10.1109/TNNLS.2023.3244021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work, we study a more realistic challenging scenario in multiview clustering (MVC), referred to as incomplete MVC (IMVC) where some instances in certain views are missing. The key to IMVC is how to adequately exploit complementary and consistency information under the incompleteness of data. However, most existing methods address the incompleteness problem at the instance level and they require sufficient information to perform data recovery. In this work, we develop a new approach to facilitate IMVC based on the graph propagation perspective. Specifically, a partial graph is used to describe the similarity of samples for incomplete views, such that the issue of missing instances can be translated into the missing entries of the partial graph. In this way, a common graph can be adaptively learned to self-guide the propagation process by exploiting the consistency information, and the propagated graph of each view is in turn used to refine the common self-guided graph in an iterative manner. Thus, the associated missing entries can be inferred through graph propagation by exploiting the consistency information across all views. On the other hand, existing approaches focus on the consistency structure only, and the complementary information has not been sufficiently exploited due to the data incompleteness issue. By contrast, under the proposed graph propagation framework, an exclusive regularization term can be naturally adopted to exploit the complementary information in our method. Extensive experiments demonstrate the effectiveness of the proposed method in comparison with state-of-the-art methods. The source code of our method is available at the https://github.com/CLiu272/TNNLS-PGP.
引用
收藏
页码:10803 / 10816
页数:14
相关论文
共 49 条
[1]   Multi-Omics Factor Analysis-a framework for unsupervised integration of multi-omics data sets [J].
Argelaguet, Ricard ;
Velten, Britta ;
Arnol, Damien ;
Dietrich, Sascha ;
Zenz, Thorsten ;
Marioni, John C. ;
Buettner, Florian ;
Huber, Wolfgang ;
Stegle, Oliver .
MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (06)
[2]  
Beghin T, 2010, LECT NOTES COMPUT SC, V6475, P345, DOI 10.1007/978-3-642-17691-3_32
[3]  
Chao Guoqing, 2021, IEEE Trans Artif Intell, V2, P146, DOI 10.1109/tai.2021.3065894
[4]  
Chen X, 2017, IEEE C COMPUTER COMM, P1, DOI DOI 10.1109/INFOCOM.2017.8057198
[5]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068
[6]  
Demsar J, 2006, J MACH LEARN RES, V7, P1
[7]   Integrative cancer patient stratification via subspace merging [J].
Ding, Hao ;
Sharpnack, Michael ;
Wang, Chao ;
Huang, Kun ;
Machiraju, Raghu .
BIOINFORMATICS, 2019, 35 (10) :1653-1659
[8]  
Fang Xiang, 2020, IEEE Trans Artif Intell, V1, P233, DOI 10.1109/TAI.2021.3052425
[9]   Multi-View Subspace Clustering [J].
Gao, Hongchang ;
Nie, Feiping ;
Li, Xuelong ;
Huang, Heng .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :4238-4246
[10]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672