A Rational Design of Silicon-Based Anode for All-Solid-State Lithium-Ion Batteries: A Review

被引:14
作者
Kim, Minho [1 ]
Ahn, Hwichan [1 ]
Choi, Junil [1 ]
Kim, Won Bae [1 ,2 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Grad Inst Ferrous & Energy Mat Technol, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
all-solid-state batteries; lithium-ion batteries; silicon anodes; solid-state electrolytes; THIN-FILM; HIGH-CAPACITY; SI ANODES; ELECTROCHEMICAL REDOX; POLYMER ELECTROLYTE; ENERGY DENSITY; METAL ANODES; PERFORMANCE; COMPOSITE; INTERFACES;
D O I
10.1002/ente.202201321
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Silicon is a promising alternative to the conventional graphite anode for lithium-ion batteries (LIBs). However, pulverization of Si particles caused by volume expansion and formation of unstable solid electrolyte interphase can lead to several failure behaviors of LIBs. In contrast to LIBs employing liquid electrolytes, all-solid-state batteries (ASSBs) could exhibit totally different interfacial environments over Si anode materials, in terms of wetting properties of the Si surface by electrolyte. This characteristic interface of Si anode with solid-state electrolyte (SSE) can change the electrochemical stability and long-term life cycle performance of Si. In respect of commercialization, the incorporation of Si anode into ASSB could be the strongest approach to overcome the intrinsic limitations of anode materials. However, large contact losses between Si and SSE have to be handled in order to provide good electrochemical performance and stability. In this review, failure behaviors of Si anode within the SSE with proper characterization method is addressed and several design strategies for incorporation of Si anode into ASSB based on the following classifications are introduced: composite type and diffusion-dependent type Si anodes. From this review, the possibility of Si anode for practical application to next-generation ASSB by regulating its chemical and mechanical properties is suggested.
引用
收藏
页数:18
相关论文
共 142 条
[21]   Insights into the Electrochemical Stability and Lithium Conductivity of Li4MS4 (M = Si, Ge, and Sn) [J].
Chen, Fengjiao ;
Cheng, Songqi ;
Liu, Jian-Bo ;
Li, Shunning ;
Ouyang, Wenhong ;
Liu, Baixin .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (19) :22438-22447
[22]   Electrolyte design for LiF-rich solid-electrolyte interfaces to enable high-performance microsized alloy anodes for batteries [J].
Chen, Ji ;
Fan, Xiulin ;
Li, Qin ;
Yang, Hongbin ;
Khoshi, M. Reza ;
Xu, Yaobin ;
Hwang, Sooyeon ;
Chen, Long ;
Ji, Xiao ;
Yang, Chongyin ;
He, Huixin ;
Wang, Chongmin ;
Garfunkel, Eric ;
Su, Dong ;
Borodin, Oleg ;
Wang, Chunsheng .
NATURE ENERGY, 2020, 5 (05) :386-397
[23]   A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus-Structured Current Collector [J].
Chen, Xilin ;
Gerasopoulos, Konstantinos ;
Guo, Juchen ;
Brown, Adam ;
Wang, Chunsheng ;
Ghodssi, Reza ;
Culver, James N. .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (02) :380-387
[24]   Virus-Enabled Silicon Anode for Lithium-Ion Batteries [J].
Chen, Xilin ;
Gerasopoulos, Konstantinos ;
Guo, Juchen ;
Brown, Adam ;
Wang, Chunsheng ;
Ghodssi, Reza ;
Culver, James N. .
ACS NANO, 2010, 4 (09) :5366-5372
[25]   A high-voltage all-solid-state lithium-ion battery with Li-Mn-Ni-O and silicon thin-film electrodes [J].
Chen, Y. ;
Tang, Z. ;
Yang, S. ;
Wang, Y. ;
Chua, D. .
MATERIALS TECHNOLOGY, 2015, 30 (A2) :A58-A63
[26]   A Review of Solid Electrolyte Interphases on Lithium Metal Anode [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Wei, Fei ;
Zhang, Ji-Guang ;
Zhang, Qiang .
ADVANCED SCIENCE, 2016, 3 (03)
[27]   Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode [J].
Choi, Nam-Soon ;
Yew, Kyoung Han ;
Lee, Kyu Youl ;
Sung, Minseok ;
Kim, Ho ;
Kim, Sung-Soo .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :1254-1259
[28]   Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors [J].
Choi, Nam-Soon ;
Chen, Zonghai ;
Freunberger, Stefan A. ;
Ji, Xiulei ;
Sun, Yang-Kook ;
Amine, Khalil ;
Yushin, Gleb ;
Nazar, Linda F. ;
Cho, Jaephil ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (40) :9994-10024
[29]   Carbon-coated silicon as anode material for lithium ion batteries: advantages and limitations [J].
Dimov, N ;
Kugino, S ;
Yoshio, M .
ELECTROCHIMICA ACTA, 2003, 48 (11) :1579-1587
[30]   In Situ Investigation of Chemomechanical Effects in Thiophosphate Solid Electrolytes [J].
Dixit, Marm B. ;
Singh, Nikhilendra ;
Horwath, James P. ;
Shevchenko, Pavel D. ;
Jones, Michael ;
Stach, Eric A. ;
Arthur, Timothy S. ;
Hatzell, Kelsey B. .
MATTER, 2020, 3 (06) :2138-2159