A Rational Design of Silicon-Based Anode for All-Solid-State Lithium-Ion Batteries: A Review

被引:14
作者
Kim, Minho [1 ]
Ahn, Hwichan [1 ]
Choi, Junil [1 ]
Kim, Won Bae [1 ,2 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Chem Engn, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Grad Inst Ferrous & Energy Mat Technol, 77 Cheongam Ro, Pohang 37673, Gyeongbuk, South Korea
基金
新加坡国家研究基金会;
关键词
all-solid-state batteries; lithium-ion batteries; silicon anodes; solid-state electrolytes; THIN-FILM; HIGH-CAPACITY; SI ANODES; ELECTROCHEMICAL REDOX; POLYMER ELECTROLYTE; ENERGY DENSITY; METAL ANODES; PERFORMANCE; COMPOSITE; INTERFACES;
D O I
10.1002/ente.202201321
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Silicon is a promising alternative to the conventional graphite anode for lithium-ion batteries (LIBs). However, pulverization of Si particles caused by volume expansion and formation of unstable solid electrolyte interphase can lead to several failure behaviors of LIBs. In contrast to LIBs employing liquid electrolytes, all-solid-state batteries (ASSBs) could exhibit totally different interfacial environments over Si anode materials, in terms of wetting properties of the Si surface by electrolyte. This characteristic interface of Si anode with solid-state electrolyte (SSE) can change the electrochemical stability and long-term life cycle performance of Si. In respect of commercialization, the incorporation of Si anode into ASSB could be the strongest approach to overcome the intrinsic limitations of anode materials. However, large contact losses between Si and SSE have to be handled in order to provide good electrochemical performance and stability. In this review, failure behaviors of Si anode within the SSE with proper characterization method is addressed and several design strategies for incorporation of Si anode into ASSB based on the following classifications are introduced: composite type and diffusion-dependent type Si anodes. From this review, the possibility of Si anode for practical application to next-generation ASSB by regulating its chemical and mechanical properties is suggested.
引用
收藏
页数:18
相关论文
共 142 条
[1]   Silicon as a potential anode material for Li-ion batteries: where size, geometry and structure matter [J].
Ashuri, Maziar ;
He, Qianran ;
Shaw, Leon L. .
NANOSCALE, 2016, 8 (01) :74-103
[2]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[3]   Interface Stability of Argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in Bulk All-Solid-State Batteries [J].
Auvergniot, Jeremie ;
Cassel, Alice ;
Ledeuil, Jean-Bernard ;
Viallet, Virginie ;
Seznec, Vincent ;
Dedryvere, Remi .
CHEMISTRY OF MATERIALS, 2017, 29 (09) :3883-3890
[4]   On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries [J].
Baggetto, L. ;
Oudenhoven, J. F. M. ;
van Dongen, T. ;
Klootwijk, J. H. ;
Mulder, M. ;
Niessen, R. A. H. ;
de Croon, M. H. J. M. ;
Notten, P. H. L. .
JOURNAL OF POWER SOURCES, 2009, 189 (01) :402-410
[5]   High energy density all-solid-state batteries: A challenging concept towards 3D integration [J].
Baggetto, Loic ;
Niessen, Rogier A. H. ;
Roozeboom, Fred ;
Notten, Peter H. L. .
ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (07) :1057-1066
[6]   3D negative electrode stacks for integrated all-solid-state lithium-ion microbatteries [J].
Baggetto, Loic ;
Knoops, Harm C. M. ;
Niessen, Rogier A. H. ;
Kessels, Wilhelmus M. M. ;
Notten, Peter H. L. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (18) :3703-3708
[7]   Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes [J].
Banerjee, Abhik ;
Wang, Xuefeng ;
Fang, Chengcheng ;
Wu, Erik A. ;
Meng, Ying Shirley .
CHEMICAL REVIEWS, 2020, 120 (14) :6878-6933
[8]   Operando Transmission Electron Microscopy Study of All-Solid-State Battery Interface: Redistribution of Lithium among Interconnected Particles [J].
Basak, Shibabrata ;
Migunov, Vadim ;
Tavabi, Amir H. ;
George, Chandramohan ;
Lee, Qing ;
Rosi, Paolo ;
Arszelewska, Violetta ;
Ganapathy, Swapna ;
Vijay, Ashwin ;
Ooms, Frans ;
Schierholz, Roland ;
Tempel, Hermann ;
Kungl, Hans ;
Mayer, Joachim ;
Dunin-Borkowski, Rafal E. ;
Eichel, Ruediger-A ;
Wagemaker, Marnix ;
Kelder, Erik M. .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (06) :5101-5106
[9]   FABRICATION AND CHARACTERIZATION OF AMORPHOUS LITHIUM ELECTROLYTE THIN-FILMS AND RECHARGEABLE THIN-FILM BATTERIES [J].
BATES, JB ;
DUDNEY, NJ ;
GRUZALSKI, GR ;
ZUHR, RA ;
CHOUDHURY, A ;
LUCK, CF ;
ROBERTSON, JD .
JOURNAL OF POWER SOURCES, 1993, 43 (1-3) :103-110
[10]   THIN-FILM RECHARGEABLE LITHIUM BATTERIES [J].
BATES, JB ;
DUDNEY, NJ ;
LUBBEN, DC ;
GRUZALSKI, GR ;
KWAK, BS ;
YU, XH ;
ZUHR, RA .
JOURNAL OF POWER SOURCES, 1995, 54 (01) :58-62