A novel variational Bayesian adaptive Kalman filter with mismatched process noise covariance matrix

被引:3
作者
Liu, Xinrui [1 ]
Xu, Hong [1 ]
Zheng, Daikun [2 ]
Quan, Yinghui [1 ]
机构
[1] Xidian Univ, Xian, Peoples R China
[2] AF Early Warning Acad, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
adaptive estimation; adaptive Kalman filters; target tracking; STATE ESTIMATION; INFERENCE; SYSTEMS;
D O I
10.1049/rsn2.12391
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper proposes a novel variational Bayesian (VB) adaptive Kalman filter with mismatched process noise covariance matrix (PNCM). Firstly, this paper explains the reason why the predicted error covariance matrix (PECM) is chosen for variational inference. Secondly, compared with the earlier VB adaptive Kalman filter (VB-AKF-Q), the proposed filter calculate the dynamic model of the PECM with its historical estimation information. Therefore, the proposed filter can overcome the influence of mismatched PNCM on the initial value setting of PECM in the VB-AKF-Q. Finally, we use the evidence lower bound for the proposed filter and give the convergence criterion on this basis. Some examples with a target tracking simulation are carried out to demonstrate the superiority of the proposed filter.
引用
收藏
页码:967 / 977
页数:11
相关论文
共 41 条
  • [1] Approximate Inference in State-Space Models With Heavy-Tailed Noise
    Agamennoni, Gabriel
    Nieto, Juan I.
    Nebot, Eduardo M.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2012, 60 (10) : 5024 - 5037
  • [2] Albu F., 2003, IEEE T AEROSP, V39, P1333
  • [3] Adaptive Kalman Filtering by Covariance Sampling
    Assa, Akbar
    Plataniotis, Konstantinos N.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2017, 24 (09) : 1288 - 1292
  • [4] Bishop C.M., 2006, Pattern recognition and machine learning
  • [5] Variational Inference: A Review for Statisticians
    Blei, David M.
    Kucukelbir, Alp
    McAuliffe, Jon D.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) : 859 - 877
  • [6] Dynamic Matrix-Variate Graphical Models
    Carvalho, Carlos M.
    West, Mike
    [J]. BAYESIAN ANALYSIS, 2007, 2 (01): : 69 - 97
  • [7] Chui C.K., 1987, KALMAN FILTERING REA
  • [8] Uncertainty-Aware Variational Inference for Target Tracking
    Cui, Haoran
    Mihaylova, Lyudmila
    Wang, Xiaoxu
    Gao, Shuaihe
    [J]. IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2023, 59 (01) : 258 - 273
  • [9] Optimal Bayesian Kalman Filtering With Prior Update
    Dehghannasiri, Roozbeh
    Esfahani, Mohammad Shahrokh
    Qian, Xiaoning
    Dougherty, Edward R.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (08) : 1982 - 1996
  • [10] Variational Bayesian Adaptive Cubature Information Filter Based on Wishart Distribution
    Dong, Peng
    Jing, Zhongliang
    Leung, Henry
    Shen, Kai
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2017, 62 (11) : 6051 - 6057