Alternative Energy Carriers: Unique Interfaces for Electrochemical Hydrogenic Transformations

被引:23
作者
Carroll, Gerard M. [1 ]
Gebbie, Matthew A. [2 ]
Stahl, Shannon S. [3 ]
Johnson, Mathew R. [3 ]
Luca, Oana R. [4 ]
Petersen, Haley A. [4 ]
Bomble, Yannick J. [5 ]
Neale, Nathan R. [1 ]
Cortright, Randy D. [1 ,5 ]
机构
[1] Natl Renewable Energy Lab, Chem & Nanosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA
[2] Univ Wisconsin, Dept Chem & Biol Engn, Madison, WI 53706 USA
[3] Univ Wisconsin, Dept Chem, 1101 Univ Ave, Madison, WI 53706 USA
[4] Univ Colorado, Dept Chem, Boulder, CO 80309 USA
[5] Natl Renewable Energy Lab, Biosci Ctr, 15013 Denver West Pkwy, Golden, CO 80401 USA
基金
美国国家科学基金会;
关键词
electrochemical interfaces; energy carriers; energy storage; hydrogen carriers; FLOW FUEL-CELL; O-2; REDUCTION; DIRECT CONVERSION; RECENT PROGRESS; CARBON-DIOXIDE; IONIC LIQUIDS; CO2; QUANTUM DOTS; DOUBLE-LAYER; REDOX;
D O I
10.1002/aenm.202203751
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The shift toward renewable energy generation sources, characterized by their non-carbon emitting but variable nature, has spurred significant innovation in energy storage technologies. Advancements in foundational understanding from investments in basic science and clever engineering solutions, coupled with increasing industrial adoption, have resulted in a notable reduction in the cost of storing electricity from variable energy generation sources. These developments have paved the way for the exploration of new and innovative forms of energy storage that deviate from traditional technologies. In this perspective, it is posited that the progress made in energy storage research over recent years has opened the door to the development of energy carriers for technologies that are yet to be realized. To illustrate this concept, examples of alternative energy carriers are provided within the context of unique electrochemical interfaces for electrochemical hydrogenic transformations. The unique properties of these interfaces and electrochemical systems can be leveraged in ways not yet imagined, creating new possibilities for energy storage. A perspective on the progress and challenges for each interface as well as a general outlook for the advancement of energy carrier systems are provided.
引用
收藏
页数:15
相关论文
共 164 条
[51]   Electrochemistry of CdS nanoparticles: A correlation between optical and electrochemical band gaps [J].
Haram, SK ;
Quinn, BM ;
Bard, AJ .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2001, 123 (36) :8860-8861
[52]   Status Update on Bioelectrochemical Systems: Prospects for Carbon Electrode Design and Scale-Up [J].
Herkendell, Katharina .
CATALYSTS, 2021, 11 (02) :1-18
[53]   A PHOTOCHEMICAL ELECTRICAL FUEL-CELL .2. CARBOHYDRATE FUELS [J].
HERTL, W ;
WEETALL, HH .
BIOELECTROCHEMISTRY AND BIOENERGETICS, 1985, 14 (4-6) :367-373
[54]   A PHOTOCHEMICAL ELECTRICAL FUEL-CELL .1. ALCOHOL FUELS [J].
HERTL, W ;
WEETALL, HH .
BIOELECTROCHEMISTRY AND BIOENERGETICS, 1985, 14 (4-6) :357-366
[55]   Reversible Electrochemical Gelation of Metal Chalcogenide Quantum Dots [J].
Hewa-Rahinduwage, Chathuranga C. ;
Geng, Xin ;
Silva, Karunamuni L. ;
Niu, Xiangfu ;
Zhang, Liang ;
Brock, Stephanie L. ;
Luo, Long .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (28) :12207-12215
[56]   Photoinduced Charge Transfer from Quantum Dots Measured by Cyclic Voltammetry [J].
Homer, Micaela K. ;
Kuo, Ding-Yuan ;
Dou, Florence Y. ;
Cossairt, Brandi M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (31) :14226-14234
[57]   Thermal Hydroquinone Oxidation on Co/N-doped Carbon Proceeds by a Band-Mediated Electrochemical Mechanism [J].
Howland, William C. ;
Gerken, James B. ;
Stahl, Shannon S. ;
Surendranath, Yogesh .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (25) :11253-11262
[58]   Viologen-Decorated TEMPO for Neutral Aqueous Organic Redox Flow Batteries [J].
Hu, Shuzhi ;
Wang, Liwen ;
Yuan, Xianzhi ;
Xiang, Zhipeng ;
Huang, Mingbao ;
Luo, Peng ;
Liu, Yufeng ;
Fu, Zhiyong ;
Liang, Zhenxing .
ENERGY MATERIAL ADVANCES, 2021, 2021
[59]   Au-Pd separation enhances bimetallic catalysis of alcohol oxidation [J].
Huang, Xiaoyang ;
Akdim, Ouardia ;
Douthwaite, Mark ;
Wang, Kai ;
Zhao, Liang ;
Lewis, Richard J. ;
Pattisson, Samuel ;
Daniel, Isaac T. ;
Miedziak, Peter J. ;
Shaw, Greg ;
Morgan, David J. ;
Althahban, Sultan M. ;
Davies, Thomas E. ;
He, Qian ;
Wang, Fei ;
Fu, Jile ;
Bethell, Donald ;
McIntosh, Steven ;
Kiely, Christopher J. ;
Hutchings, Graham J. .
NATURE, 2022, 603 (7900) :271-+
[60]   Techno-economic analysis of long-duration energy storage and flexible power generation technologies to support high-variable renewable energy grids [J].
Hunter, Chad A. ;
Penev, Michael M. ;
Reznicek, Evan P. ;
Eichman, Joshua ;
Rustagi, Neha ;
Baldwin, Samuel F. .
JOULE, 2021, 5 (08) :2077-2101