Note on complete convergence and complete moment convergence for negatively dependent random variables under sub-linear expectations

被引:8
作者
Xu, Mingzhou [1 ]
Kong, Xuhang [1 ]
机构
[1] Jingdezhen Ceram Univ, Sch Informat Engn, Jingdezhen 333403, Peoples R China
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 04期
关键词
negatively dependent random variables; complete convergence; complete moment convergence; sub-linear expectations; STATISTICAL PROBABILITY CONVERGENCE; INDEPENDENT RANDOM-VARIABLES; LARGE NUMBERS; LAW; INEQUALITIES;
D O I
10.3934/math.2023428
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the complete convergence and the complete moment convergence for negatively dependent (ND) random variables under sub-linear expectations. Under proper conditions of the moment of random variables, we establish the complete convergence and the complete moment convergence. As applications, we obtain the Marcinkiewcz-Zygmund type strong law of large numbers of ND random variables under sub-linear expectations. The results here generalize the corresponding ones in classic probability space to those under sub-linear expectations.
引用
收藏
页码:8504 / 8521
页数:18
相关论文
共 35 条
[1]   Complete convergence and complete integral convergence of partial sums for moving average process under sub-linear expectations [J].
Chen, Xiaocong ;
Wu, Qunying .
AIMS MATHEMATICS, 2022, 7 (06) :9694-9715
[2]   Strong laws of large numbers for sub-linear expectations [J].
Chen ZengJing .
SCIENCE CHINA-MATHEMATICS, 2016, 59 (05) :945-954
[3]  
Chow Y.S., 1988, Bull. Inst. Math. Acad. Sin, V16, P177
[4]  
[高付清 GAO FuQing], 2011, [中国科学. 数学, Scientia Sinica Mathematica], V41, P337
[5]   Complete Moment Convergence for the Dependent Linear Processes with Random Coefficients [J].
Hosseini, Seyed Mohammad ;
Nezakati, Ahmad .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (08) :1321-1333
[6]   COMPLETE CONVERGENCE AND THE LAW OF LARGE NUMBERS [J].
HSU, PL ;
ROBBINS, H .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1947, 33 (02) :25-31
[7]   How big are the increments of G-Brownian motion? [J].
Hu Feng ;
Chen ZengJing ;
Zhang DeFei .
SCIENCE CHINA-MATHEMATICS, 2014, 57 (08) :1687-1700
[8]   Complete moment convergence of moving average process generated by a class of random variables [J].
Ko, Mi-Hwa .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
[10]   Convergence of asymptotically almost negatively associated random variables with random coefficients [J].
Meng, Bing ;
Wang, Dingcheng ;
Wu, Qunying .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2023, 52 (09) :2931-2945