Vapor-solid-solid growth of silicon nanowires using magnesium seeds and their electrochemical performance in Li-ion battery anodes

被引:21
作者
Rashad, Muhammad [1 ,2 ]
Geaney, Hugh [1 ,2 ]
机构
[1] Univ Limerick, Dept Chem Sci, Limerick V94 T9PX, Ireland
[2] Univ Limerick, Bernal Inst, Limerick V94 T9PX, Ireland
基金
爱尔兰科学基金会;
关键词
Silicon nanowires; Vapor -solid -solid growth; Magnesium silicide; Lithium -ion batteries; Electrochemical characterization; ELECTROLYTE; CHALLENGES; GRAPHENE;
D O I
10.1016/j.cej.2022.139397
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The energy density of next-generation lithium-ion batteries (LIBs) can be considerably improved by replacing traditional graphite anodes with silicon nanowires (Si NWs). However, the synthesis of Si NWs is restricted due to the requirement for expensive and heavy metal catalysts for growth. Herein, for the first time, we successfully demonstrate the growth of Si NWs using magnesium (Mg) as a catalyst material, within a wet-chemical glass-ware-based setup. Analysis of the Si NWs revealed the presence of Mg2Si at the tips of the Si NWs, indicating that growth proceeds via a vapor-solid-solid (VSS) mechanism. Si NWs were also grown from Mg foil, Mg powder, and from thermally evaporated layers on stainless steel substrates, demonstrating the versatility of Mg as a catalyst material. Mg as a catalyst facilitated high NW mass loadings (up to 0.8 mg/cm2) on planar stainless steel current collectors, coupled with tight diameter control (average diameter of-20 nm). Within LIB half-cell testing, they demonstrated high initial coulombic efficiencies (up to-81 %) and high gravimetric (up to 2792 mAh/g) and areal capacities (up to 1.58 mAh/cm2). The approach highlights Mg as a catalyst for the development of higher mass loading and binder-free Si NWs anodes for LIBs.
引用
收藏
页数:7
相关论文
共 47 条
[21]   Control of thickness and orientation of solution-grown silicon nanowires [J].
Holmes, JD ;
Johnston, KP ;
Doty, RC ;
Korgel, BA .
SCIENCE, 2000, 287 (5457) :1471-1473
[22]   Si nanoparticle-decorated Si nanowire networks for Li-ion battery anodes [J].
Hu, Liangbing ;
Wu, Hui ;
Hong, Seung Sae ;
Cui, Lifeng ;
McDonough, James R. ;
Bohy, Sy ;
Cui, Yi .
CHEMICAL COMMUNICATIONS, 2011, 47 (01) :367-369
[23]   Dense Silicon Nanowire Networks Grown on a Stainless-Steel Fiber Cloth: A Flexible and Robust Anode for Lithium-Ion Batteries [J].
Imtiaz, Sumair ;
Amiinu, Ibrahim Saana ;
Storan, Dylan ;
Kapuria, Nilotpal ;
Geaney, Hugh ;
Kennedy, Tadhg ;
Ryan, Kevin M. .
ADVANCED MATERIALS, 2021, 33 (52)
[24]   Mesoporous Thin-Wall Molybdenum Nitride for Fast and Stable Na/Li Storage [J].
Jiang, Guangshen ;
Qiu, Yuqian ;
Lu, Qingqiong ;
Zhuang, Wanqi ;
Xu, Xiaosa ;
Kaskel, Stefan ;
Xu, Fei ;
Wang, Hongqiang .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (44) :41188-41195
[25]   A Scalable Silicon Nanowires-Grown-On-Graphite Composite for High-Energy Lithium Batteries [J].
Karuppiah, Saravanan ;
Keller, Caroline ;
Kumar, Praveen ;
Jouneau, Pierre-Henri ;
Aldakov, Dmitry ;
Ducros, Jean-Baptiste ;
Lapertot, Gerard ;
Chenevier, Pascale ;
Haon, Cedric .
ACS NANO, 2020, 14 (09) :12006-12015
[26]   Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes [J].
Kennedy, Tadhg ;
Brandon, Michael ;
Laffir, Fathima ;
Ryan, Kevin M. .
JOURNAL OF POWER SOURCES, 2017, 359 :601-610
[27]   Direct Growth of Si, Ge, and Si-Ge Heterostructure Nanowires Using Electroplated Zn: An Inexpensive Seeding Technique for Li-Ion Alloying Anodes [J].
Kilian, Seamus ;
McCarthy, Kieran ;
Stokes, Killian ;
Adegoke, Temilade Esther ;
Conroy, Michele ;
Amiinu, Ibrahim Saana ;
Geaney, Hugh ;
Kennedy, Tadhg ;
Ryan, Kevin M. .
SMALL, 2021, 17 (10)
[28]   The role of precursor-decomposition kinetics in silicon-nanowire synthesis in organic solvents [J].
Lee, DC ;
Hanrath, T ;
Korgel, BA .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (23) :3573-3577
[29]   Carbon Nanotube-Enhanced Growth of Silicon Nanowires as an Anode for High-Performance Lithium-Ion Batteries [J].
Li, Xianglong ;
Cho, Jeong-Hyun ;
Li, Nan ;
Zhang, Yingying ;
Williams, Darrick ;
Dayeh, Shadi A. ;
Picraux, S. T. .
ADVANCED ENERGY MATERIALS, 2012, 2 (01) :87-93
[30]   Opportunities and Challenges of Lithium Ion Batteries in Automotive Applications [J].
Masias, Alvaro ;
Marcicki, James ;
Paxton, William A. .
ACS ENERGY LETTERS, 2021, 6 (02) :621-630