generalized Turan problem;
extremal;
MAXIMUM NUMBER;
COPIES;
PENTAGONS;
D O I:
10.7151/dmgt.2388
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
For graphs H and F, the generalized Turan number ex(n, H, F) is the largest number of copies of H in an F -free graph on n vertices. We consider this problem when both H and F have at most four vertices. We give sharp results in almost all cases, and connect the remaining cases to well-known unsolved problems. Our main new contribution is applying the progressive induction method of Simonovits for generalized Turan problems.
机构:
HUN REN Alfred Renyi Inst Math, Budapest, HungaryHUN REN Alfred Renyi Inst Math, Budapest, Hungary
Gyori, Ervin
He, Zhen
论文数: 0引用数: 0
h-index: 0
机构:
Beijing Jiaotong Univ, Sch Math & Stat, Beijing, Peoples R ChinaHUN REN Alfred Renyi Inst Math, Budapest, Hungary
He, Zhen
Lv, Zequn
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ Beijing, Dept Math Sci, Beijing, Peoples R ChinaHUN REN Alfred Renyi Inst Math, Budapest, Hungary
Lv, Zequn
Salia, Nika
论文数: 0引用数: 0
h-index: 0
机构:
King Fahd Univ Petr & Minerals, Dhahran, Saudi ArabiaHUN REN Alfred Renyi Inst Math, Budapest, Hungary
Salia, Nika
Tompkins, Casey
论文数: 0引用数: 0
h-index: 0
机构:
HUN REN Alfred Renyi Inst Math, Budapest, HungaryHUN REN Alfred Renyi Inst Math, Budapest, Hungary
Tompkins, Casey
Varga, Kitti
论文数: 0引用数: 0
h-index: 0
机构:
Budapest Univ Technol & Econ, Dept Comp Sci & Informat Theory, Budapest, Hungary
HUN REN ELTE Egervary Res Grp, Budapest, HungaryHUN REN Alfred Renyi Inst Math, Budapest, Hungary
Varga, Kitti
Zhu, Xiutao
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Univ Aeronaut & Astronaut, Sch Math, Nanjing, Peoples R ChinaHUN REN Alfred Renyi Inst Math, Budapest, Hungary