Generalized Turan Problems for Small Graphs

被引:10
|
作者
Gerbner, Daniel [1 ]
机构
[1] Alfred Renyi Inst Math, Budapest, Hungary
关键词
generalized Turan problem; extremal; MAXIMUM NUMBER; COPIES; PENTAGONS;
D O I
10.7151/dmgt.2388
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For graphs H and F, the generalized Turan number ex(n, H, F) is the largest number of copies of H in an F -free graph on n vertices. We consider this problem when both H and F have at most four vertices. We give sharp results in almost all cases, and connect the remaining cases to well-known unsolved problems. Our main new contribution is applying the progressive induction method of Simonovits for generalized Turan problems.
引用
收藏
页码:549 / 572
页数:24
相关论文
共 37 条
  • [1] On the extremal graphs in generalized Turan problems
    Gerbner, Daniel
    DISCRETE MATHEMATICS, 2024, 347 (06)
  • [2] Generalized Turan Problems for Complete Bipartite Graphs
    Gerbner, Daniel
    Patkos, Balazs
    GRAPHS AND COMBINATORICS, 2022, 38 (05)
  • [3] Generalized rainbow Turan problems
    Gerbner, Daniel
    Methuku, Abhishek
    Meszaros, Tamas
    Palmer, Cory
    ELECTRONIC JOURNAL OF COMBINATORICS, 2022, 29 (02)
  • [4] Generalized Turan problems for even cycles
    Gerbner, Daniel
    Gyori, Ervin
    Methuku, Abhishek
    Vizer, Mate
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 145 : 169 - 213
  • [5] Some exact results for generalized Turan problems
    Gerbner, Daniel
    Palmer, Cory
    EUROPEAN JOURNAL OF COMBINATORICS, 2022, 103
  • [6] A localized approach to generalized Turan problems
    Kirsch, Rachel
    Nir, J. D.
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (03) : 3 - 34
  • [7] On supersaturation and stability for generalized Turan problems
    Halfpap, Anastasia
    Palmer, Cory
    JOURNAL OF GRAPH THEORY, 2021, 97 (02) : 232 - 240
  • [8] GENERALIZED TURAN PROBLEMS FOR EVEN CYCLES
    Gerbner, D.
    Gyori, E.
    Methuku, A.
    Vizer, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 723 - 728
  • [9] Generalized Planar Turan Numbers
    Gyori, Ervin
    Paulos, Addisu
    Salia, Nika
    Tompkins, Casey
    Zamora, Oscar
    ELECTRONIC JOURNAL OF COMBINATORICS, 2021, 28 (04)
  • [10] Random polynomial graphs for random Turan problems
    Spiro, Sam
    JOURNAL OF GRAPH THEORY, 2024, 105 (02) : 192 - 208