A framework of structural damage detection for civil structures using a combined multi-scale convolutional neural network and echo state network

被引:48
|
作者
He, Yingying [1 ,2 ]
Zhang, Likai [3 ]
Chen, Zengshun [3 ]
Li, Cruz Y. [4 ]
机构
[1] Chongqing Coll Humanities Sci & Technol, Sch Comp Engn, Chongqing 401524, Peoples R China
[2] Chongqing Jiaotong Univ, Chongqing Engn & Technol Res Ctr Big Data Publ Tr, Chongqing 400074, Peoples R China
[3] Chongqing Univ, Sch Civil Engn, Chongqing 400035, Peoples R China
[4] Hong Kong Univ Sci & Technol, Sch Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
关键词
Structural health monitoring; Damage detection; ESN-MSCNN; Deep learning; FEATURE-EXTRACTION;
D O I
10.1007/s00366-021-01584-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Structural health monitoring (SHM) has become a notable method to ensure structural safety, yet the ability of existing damage detection techniques need improvements on extracting structural information from SHM data. Echo state networks (ESN) and multi-scale convolutional neural networks (MSCNN) proved effective in analyzing time and frequency domain data for civil structures. However, these models cannot identify structural information in the time-frequency domain. This study proposes a novel ESN-MSCNN combined model to effectively extract the time-frequency features of civil structures for damage detection. Firstly, vibration signal data is transformed into continuous time and Fourier spaces via data augmentation operation. Secondly, the ESN and MSCNN structures extract time and frequency domain features from preprocessed data, respectively. Finally, two combined features are fed into two fully connected layers to evaluate the degree of structural damage. Experiments on a scaled bridge and an IASC-ASCE benchmark building indicated that the proposed ESN-MSCNN model outperforms the state-of-the-art models for structural damage detection.
引用
收藏
页码:1771 / 1789
页数:19
相关论文
共 50 条
  • [21] Multi-scale dilated convolution of convolutional neural network for image denoising
    Yanjie Wang
    Guodong Wang
    Chenglizhao Chen
    Zhenkuan Pan
    Multimedia Tools and Applications, 2019, 78 : 19945 - 19960
  • [22] A novel multi-scale convolutional neural network for motor imagery classification
    Riyad, Mouad
    Khalil, Mohammed
    Adib, Abdellah
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 68
  • [23] Multi-Scale Convolutional Recurrent Neural Network for Bearing Fault Detection in Noisy Manufacturing Environments
    Oh, Seokju
    Han, Seugmin
    Jeong, Jongpil
    APPLIED SCIENCES-BASEL, 2021, 11 (09):
  • [24] Multi-Scale Acoustic Velocity Inversion Based on a Convolutional Neural Network
    Li, Wenda
    Wu, Tianqi
    Liu, Hong
    REMOTE SENSING, 2024, 16 (05)
  • [25] Multi-scale dilated convolution of convolutional neural network for image denoising
    Wang, Yanjie
    Wang, Guodong
    Chen, Chenglizhao
    Pan, Zhenkuan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (14) : 19945 - 19960
  • [26] Multi-scale dilated convolution of convolutional neural network for crowd counting
    Wang, Yanjie
    Hu, Shiyu
    Wang, Guodong
    Chen, Chenglizhao
    Pan, Zhenkuan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (1-2) : 1057 - 1073
  • [27] Remaining useful life prediction using multi-scale deep convolutional neural network
    Li, Han
    Zhao, Wei
    Zhang, Yuxi
    Zio, Enrico
    APPLIED SOFT COMPUTING, 2020, 89
  • [28] Deep Multi-scale Convolutional Neural Network for Hyperspectral Image Classification
    Zhang Feng-zhe
    Yang Xia
    NINTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2017), 2018, 10615
  • [29] Real-time fabric defect detection based on multi-scale convolutional neural network
    Zhao, Shuxuan
    Yin, Li
    Zhang, Jie
    Wang, Junliang
    Zhong, Ray
    IET COLLABORATIVE INTELLIGENT MANUFACTURING, 2020, 2 (04) : 189 - 196
  • [30] Antimicrobial peptide identification using multi-scale convolutional network
    Xin Su
    Jing Xu
    Yanbin Yin
    Xiongwen Quan
    Han Zhang
    BMC Bioinformatics, 20