A framework of structural damage detection for civil structures using a combined multi-scale convolutional neural network and echo state network

被引:48
|
作者
He, Yingying [1 ,2 ]
Zhang, Likai [3 ]
Chen, Zengshun [3 ]
Li, Cruz Y. [4 ]
机构
[1] Chongqing Coll Humanities Sci & Technol, Sch Comp Engn, Chongqing 401524, Peoples R China
[2] Chongqing Jiaotong Univ, Chongqing Engn & Technol Res Ctr Big Data Publ Tr, Chongqing 400074, Peoples R China
[3] Chongqing Univ, Sch Civil Engn, Chongqing 400035, Peoples R China
[4] Hong Kong Univ Sci & Technol, Sch Civil & Environm Engn, Kowloon, Hong Kong, Peoples R China
关键词
Structural health monitoring; Damage detection; ESN-MSCNN; Deep learning; FEATURE-EXTRACTION;
D O I
10.1007/s00366-021-01584-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Structural health monitoring (SHM) has become a notable method to ensure structural safety, yet the ability of existing damage detection techniques need improvements on extracting structural information from SHM data. Echo state networks (ESN) and multi-scale convolutional neural networks (MSCNN) proved effective in analyzing time and frequency domain data for civil structures. However, these models cannot identify structural information in the time-frequency domain. This study proposes a novel ESN-MSCNN combined model to effectively extract the time-frequency features of civil structures for damage detection. Firstly, vibration signal data is transformed into continuous time and Fourier spaces via data augmentation operation. Secondly, the ESN and MSCNN structures extract time and frequency domain features from preprocessed data, respectively. Finally, two combined features are fed into two fully connected layers to evaluate the degree of structural damage. Experiments on a scaled bridge and an IASC-ASCE benchmark building indicated that the proposed ESN-MSCNN model outperforms the state-of-the-art models for structural damage detection.
引用
收藏
页码:1771 / 1789
页数:19
相关论文
共 50 条
  • [1] A framework of structural damage detection for civil structures using a combined multi-scale convolutional neural network and echo state network
    Yingying He
    Likai Zhang
    Zengshun Chen
    Cruz Y. Li
    Engineering with Computers, 2023, 39 : 1771 - 1789
  • [2] Multi-Scale Prediction For Fire Detection Using Convolutional Neural Network
    Myeongho Jeon
    Han-Soo Choi
    Junho Lee
    Myungjoo Kang
    Fire Technology, 2021, 57 : 2533 - 2551
  • [3] Multi-Scale Prediction For Fire Detection Using Convolutional Neural Network
    Jeon, Myeongho
    Choi, Han-Soo
    Lee, Junho
    Kang, Myungjoo
    FIRE TECHNOLOGY, 2021, 57 (05) : 2533 - 2551
  • [4] Novel Approach in Vegetation Detection Using Multi-Scale Convolutional Neural Network
    Albalooshi, Fatema A.
    APPLIED SCIENCES-BASEL, 2024, 14 (22):
  • [5] A Framework of Structural Damage Detection for Civil Structures Using Fast Fourier Transform and Deep Convolutional Neural Networks
    He, Yingying
    Chen, Hongyang
    Liu, Die
    Zhang, Likai
    APPLIED SCIENCES-BASEL, 2021, 11 (19):
  • [6] In-Vehicle Network Intrusion Detection System Using Convolutional Neural Network and Multi-Scale Histograms
    Baldini, Gianmarco
    INFORMATION, 2023, 14 (11)
  • [7] Multi-Scale Scene Text Detection Based on Convolutional Neural Network
    Lu, Yan-Feng
    Zhang, Ai-Xuan
    Li, Yi
    Yu, Qian-Hui
    Qiao, Hong
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 583 - 587
  • [8] Facial Feature-Based Drowsiness Detection With Multi-Scale Convolutional Neural Network
    Vijaypriya, V.
    Uma, Mohan
    IEEE ACCESS, 2023, 11 : 63417 - 63429
  • [9] Structural Damage Detection using Deep Convolutional Neural Network and Transfer Learning
    Feng, Chuncheng
    Zhang, Hua
    Wang, Shuang
    Li, Yonglong
    Wang, Haoran
    Yan, Fei
    KSCE JOURNAL OF CIVIL ENGINEERING, 2019, 23 (10) : 4493 - 4502
  • [10] Structural Damage Detection using Deep Convolutional Neural Network and Transfer Learning
    Chuncheng Feng
    Hua Zhang
    Shuang Wang
    Yonglong Li
    Haoran Wang
    Fei Yan
    KSCE Journal of Civil Engineering, 2019, 23 : 4493 - 4502