Raman sideband cooling of molecules in an optical tweezer array

被引:7
作者
Lu, Yukai [1 ,2 ]
Li, Samuel J. [1 ]
Holland, Connor M. [1 ]
Cheuk, Lawrence W. [1 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Elect & Comp Engn, Princeton, NJ USA
基金
美国国家科学基金会;
关键词
STATE; COLD; GAS;
D O I
10.1038/s41567-023-02346-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Ultracold molecules have been proposed as a candidate platform for quantum science and precision measurement because of their rich internal structures and interactions. Direct laser-cooling promises to be a rapid and efficient way to bring molecules to ultracold temperatures. However, for trapped molecules, laser-cooling to the quantum motional ground state remains an outstanding challenge. A technique capable of reaching the motional ground state is Raman sideband cooling, first demonstrated in trapped ions and atoms. Here we demonstrate Raman sideband cooling of CaF molecules trapped in an optical tweezer array. Our protocol does not rely on high magnetic fields and preserves the purity of molecular internal states. We measure a high ground-state fraction and achieve low motional entropy per particle. The low temperatures we obtain could enable longer coherence times and higher-fidelity molecular qubit gates, desirable for quantum information processing and quantum simulation. With further improvements, Raman sideband cooling will also provide a route to quantum degeneracy of large molecular samples, which could be extendable to polyatomic molecular species. Raman sideband cooling is a method used to prepare atoms and ions in their vibrational ground state. This technique has now been extended to molecules trapped in optical tweezer arrays.
引用
收藏
页码:389 / 394
页数:8
相关论文
共 53 条
  • [11] Sideband cooling of molecules in optical traps
    Caldwell, L.
    Tarbutt, M. R.
    [J]. PHYSICAL REVIEW RESEARCH, 2020, 2 (01):
  • [12] Deep Laser Cooling and Efficient Magnetic Compression of Molecules
    Caldwell, L.
    Devlin, J. A.
    Williams, H. J.
    Fitch, N. J.
    Hinds, E. A.
    Sauer, B. E.
    Tarbutt, M. R.
    [J]. PHYSICAL REVIEW LETTERS, 2019, 123 (03)
  • [13] Cold and ultracold molecules: science, technology and applications
    Carr, Lincoln D.
    DeMille, David
    Krems, Roman V.
    Ye, Jun
    [J]. NEW JOURNAL OF PHYSICS, 2009, 11
  • [14] Λ-Enhanced Imaging of Molecules in an Optical Trap
    Cheuk, Lawrence W.
    Anderegg, Loic
    Augenbraun, Benjamin L.
    Bao, Yicheng
    Burchesky, Sean
    Ketterle, Wolfgang
    Doyle, John M.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (08)
  • [15] Quantum-Gas Microscope for Fermionic Atoms
    Cheuk, Lawrence W.
    Nichols, Matthew A.
    Okan, Melih
    Gersdorf, Thomas
    Ramasesh, Vinay V.
    Bakr, Waseem S.
    Lompe, Thomas
    Zwierlein, Martin W.
    [J]. PHYSICAL REVIEW LETTERS, 2015, 114 (19)
  • [16] 3D Magneto-Optical Trap of Yttrium Monoxide
    Collopy, Alejandra L.
    Ding, Shiqian
    Wu, Yewei
    Finneran, Ian A.
    Anderegg, Loic
    Augenbraun, Benjamin L.
    Doyle, John M.
    Ye, Jun
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (21)
  • [17] Alkaline-Earth Atoms in Optical Tweezers
    Cooper, Alexandre
    Covey, Jacob P.
    Madjarov, Ivaylo S.
    Porsev, Sergey G.
    Safronova, Marianna S.
    Endres, Manuel
    [J]. PHYSICAL REVIEW X, 2018, 8 (04):
  • [18] A degenerate Fermi gas of polar molecules
    De Marco, Luigi
    Valtolina, Giacomo
    Matsuda, Kyle
    Tobias, William G.
    Covey, Jacob P.
    Ye, Jun
    [J]. SCIENCE, 2019, 363 (6429) : 853 - +
  • [19] de Miranda MHG, 2011, NAT PHYS, V7, P502, DOI [10.1038/NPHYS1939, 10.1038/nphys1939]
  • [20] Quantum computation with trapped polar molecules
    DeMille, D
    [J]. PHYSICAL REVIEW LETTERS, 2002, 88 (06) : 4