A Machine Learning Approach for Highlighting microRNAs as Biomarkers Linked to Amyotrophic Lateral Sclerosis Diagnosis and Progression

被引:2
作者
Lauria, Graziantonio [1 ]
Curcio, Rosita [1 ]
Tucci, Paola [1 ]
机构
[1] Univ Calabria, Dept Pharm Hlth & Nutr Sci, I-87036 Arcavacata Di Rende, Italy
关键词
ALS; miRNAs; degenerative diseases; clinical markers; prognosis; text mining; digitalization; POTENTIAL BIOMARKERS; CEREBROSPINAL-FLUID; HEXANUCLEOTIDE REPEAT; SKELETAL-MUSCLE; MIRNAS; EXPRESSION; DYSREGULATION; REGENERATION; CRITERIA; C9ORF72;
D O I
10.3390/biom14010047
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons in the brain and spinal cord. The early diagnosis of ALS can be challenging, as it usually depends on clinical examination and the exclusion of other possible causes. In this regard, the analysis of miRNA expression profiles in biofluids makes miRNAs promising non-invasive clinical biomarkers. Due to the increasing amount of scientific literature that often provides controversial results, this work aims to deepen the understanding of the current state of the art on this topic using a machine-learning-based approach. A systematic literature search was conducted to analyze a set of 308 scientific articles using the MySLR digital platform and the Latent Dirichlet Allocation (LDA) algorithm. Two relevant topics were identified, and the articles clustered in each of them were analyzed and discussed in terms of biomolecular mechanisms, as well as in translational and clinical settings. Several miRNAs detected in the tissues and biofluids of ALS patients, including blood and cerebrospinal fluid (CSF), have been linked to ALS diagnosis and progression. Some of them may represent promising non-invasive clinical biomarkers. In this context, future scientific priorities and goals have been proposed.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Serum microRNAs in sporadic amyotrophic lateral sclerosis
    Freischmidt, Axel
    Mueller, Kathrin
    Zondler, Lisa
    Weydt, Patrick
    Mayer, Benjamin
    von Arnim, Christine A. F.
    Huebers, Annemarie
    Dorst, Johannes
    Otto, Markus
    Holzmann, Karlheinz
    Ludolph, Albert C.
    Danzer, Karin M.
    Weishaupt, Jochen H.
    NEUROBIOLOGY OF AGING, 2015, 36 (09) : 2660.e15 - 2660.e20
  • [42] Protein biomarkers for amyotrophic lateral sclerosis
    Ryberg, Henrik
    Bowser, Robert
    EXPERT REVIEW OF PROTEOMICS, 2008, 5 (02) : 249 - 262
  • [43] Aβ1-42 and Tau as Potential Biomarkers for Diagnosis and Prognosis of Amyotrophic Lateral Sclerosis
    Lanznaster, Debora
    Hergesheimer, Rudolf C.
    Bakkouche, Salah Eddine
    Beltran, Stephane
    Vourc'h, Patrick
    Andres, Christian R.
    Dufour-Rainfray, Diane
    Corcia, Philippe
    Blasco, Helene
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (08)
  • [44] Integrated evaluation of a panel of neurochemical biomarkers to optimize diagnosis and prognosis in amyotrophic lateral sclerosis
    Falzone, Yuri Matteo
    Domi, Teuta
    Mandelli, Alessandra
    Pozzi, Laura
    Schito, Paride
    Russo, Tommaso
    Barbieri, Alessandra
    Fazio, Raffaella
    Volonte, Maria Antonietta
    Magnani, Giuseppe
    Del Carro, Ubaldo
    Carrera, Paola
    Malaspina, Andrea
    Agosta, Federica
    Quattrini, Angelo
    Furlan, Roberto
    Filippi, Massimo
    Riva, Nilo
    EUROPEAN JOURNAL OF NEUROLOGY, 2022, 29 (07) : 1930 - 1939
  • [45] Insights into Amyotrophic Lateral Sclerosis from a Machine Learning Perspective
    Gordon, Jonathan
    Lerner, Boaz
    JOURNAL OF CLINICAL MEDICINE, 2019, 8 (10)
  • [46] Evaluating the causal association between microRNAs and amyotrophic lateral sclerosis
    Zhu, Yahui
    Li, Mao
    He, Zhengqing
    Pang, Xinyuan
    Du, Rongrong
    Yu, Wenxiu
    Zhang, Jinghong
    Bai, Jiongming
    Wang, Jiao
    Huang, Xusheng
    NEUROLOGICAL SCIENCES, 2023, 44 (10) : 3567 - 3575
  • [47] CORRELATING SERUM MICRORNAS AND CLINICAL PARAMETERS IN AMYOTROPHIC LATERAL SCLEROSIS
    Raheja, Radhika
    Regev, Keren
    Healy, Brian C.
    Mazzola, Maria Antonietta
    Beynon, Vanessa
    Von Glehn, Felipe
    Paul, Anu
    Diaz-Cruz, Camilo
    Gholipour, Taha
    Glanz, Bonnie I.
    Kivisakk, Pia
    Chitnis, Tanuja
    Weiner, Howard L.
    Berry, James D.
    Gandhi, Roopali
    MUSCLE & NERVE, 2018, 58 (02) : 261 - 269
  • [48] Identification of plasma microRNAs as a biomarker of sporadic Amyotrophic Lateral Sclerosis
    Takahashi, Ikuko
    Hama, Yuka
    Matsushima, Masaaki
    Hirotani, Makoto
    Kano, Takahiro
    Hohzen, Hideki
    Yabe, Ichiro
    Utsumi, Jun
    Sasaki, Hidenao
    MOLECULAR BRAIN, 2015, 8
  • [49] A Role for GDNF and Soluble APP as Biomarkers of Amyotrophic Lateral Sclerosis Pathophysiology
    Stanga, Serena
    Brambilla, Liliana
    Tasiaux, Bernadette
    Dang, Anh H.
    Ivanoiu, Adrian
    Octave, Jean-Noel
    Rossi, Daniela
    van Pesch, Vincent
    Kienlen-Campard, Pascal
    FRONTIERS IN NEUROLOGY, 2018, 9
  • [50] Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis
    Placek, Katerina
    Benatar, Michael
    Wuu, Joanne
    Rampersaud, Evadnie
    Hennessy, Laura
    Van Deerlin, Vivianna M.
    Grossman, Murray
    Irwin, David J.
    Elman, Lauren
    McCluskey, Leo
    Quinn, Colin
    Granit, Volkan
    Statland, Jeffrey M.
    Burns, Ted M.
    Ravits, John
    Swenson, Andrea
    Katz, Jon
    Pioro, Erik P.
    Jackson, Carlayne
    Caress, James
    So, Yuen
    Maiser, Samuel
    Walk, David
    Lee, Edward B.
    Trojanowski, John Q.
    Cook, Philip
    Gee, James
    Sha, Jin
    Naj, Adam C.
    Rademakers, Rosa
    Chen, Wenan
    Wu, Gang
    Paul Taylor, J.
    McMillan, Corey T.
    EMBO MOLECULAR MEDICINE, 2021, 13 (01)