Transcutaneous Spinal Cord Stimulation to Stabilize Seated Systolic Blood Pressure in Persons With Chronic Spinal Cord Injury: Protocol Development

被引:3
|
作者
Peters, Caitlyn G. [1 ,2 ,3 ]
Harel, Noam Y. [1 ,3 ]
Weir, Joseph P. [1 ,4 ]
Wu, Yu-Kuang [1 ,3 ]
Murray, Lynda M. [1 ,3 ]
Chavez, Jorge [1 ,3 ]
Fox, Fiona E. [1 ]
Cardozo, Christopher P. [1 ,3 ]
Wecht, Jill M. [1 ,3 ]
机构
[1] James J Peters VA Med Ctr, 130 West Kingsbridge Rd, Bronx, NY 10468 USA
[2] Kessler Fdn, West Orange, NJ USA
[3] Icahn Sch Med Mt Sinai, New York, NY USA
[4] Univ Kansas, Lawrence, KS USA
来源
NEUROTRAUMA REPORTS | 2023年 / 4卷 / 01期
关键词
autonomic nervous system; blood pressure; electrical stimulation; methodology; spinal cord injury; QUALITY-OF-LIFE; AUTONOMIC CONTROL; INDIVIDUALS; HEALTH; RISK; DYSREGULATION; PERFORMANCE; PRIORITIES; DEMENTIA;
D O I
10.1089/neur.2023.0063
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Transcutaneous spinal cord stimulation (tSCS) is an emerging therapeutic strategy to target spinal autonomic circuitry to normalize and stabilize blood pressure (BP) in hypotensive persons living with chronic spinal cord injury (SCI). Our aim is to describe our current methodological approach to identify individual tSCS parameters that result in the maintenance of seated systolic blood pressure (SBP) within a pre-defined target range. The parent study is a prospective, randomized clinical trial in which eligible participants will undergo multiple mapping sessions to optimize tSCS parameter settings to promote stable SBP within a target range of 110-120 mm Hg for males and 100-120 mm Hg for females. Parameter mapping includes cathode electrode placement site (T7/8, T9/10, T11/12, and L1/2), stimulation frequency (30, 60 Hz), current amplitudes (0-120 mA), waveform (mono- and biphasic), pulse width (1000 mu s), and use of carrier frequency (0, 10 kHz). Each participant will undergo up to 10 mapping sessions involving different electrode placement sites and parameter settings. BP will be continuously monitored throughout each mapping session. Stimulation amplitude (mA) will be increased at intervals of between 2 and 10 mA until one of the following occurs: 1) seated SBP reaches the target range; 2) tSCS intensity reaches 120 mA; or 3) the participant requests to stop. Secondary outcomes recorded include 1) symptoms related to autonomic dysreflexia and orthostatic hypotension, 2) Likert pain scale, and 3) skin appearance after removal of the tSCS electrode.Clinical Trials Registration: NCT05180227
引用
收藏
页码:838 / 847
页数:10
相关论文
共 50 条
  • [41] Non-invasive transcutaneous stimulation of the human lumbar spinal cord facilitates locomotor output in spinal cord injury
    Mayr, W.
    Minassian, K.
    Tansey, K.
    Rattay, F.
    Danner, S.
    Krenn, M.
    Hofstoetter, U.
    Dimitrijevic, M.
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2012, 57 : 1024 - 1024
  • [42] Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury
    Qian Huang
    Wanru Duan
    Eellan Sivanesan
    Shuguang Liu
    Fei Yang
    Zhiyong Chen
    Neil C.Ford
    Xueming Chen
    Yun Guan
    NeuroscienceBulletin, 2019, 35 (03) : 527 - 539
  • [43] Spinal cord stimulation for multiple sclerosis and incomplete spinal cord injury
    Davis, R
    MANAGEMENT OF ACUTE AND CHRONIC PAIN: THE USE OF THE TOOLS OF THE TRADE, 2000, : 703 - 710
  • [44] Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury
    Qian Huang
    Wanru Duan
    Eellan Sivanesan
    Shuguang Liu
    Fei Yang
    Zhiyong Chen
    Neil C. Ford
    Xueming Chen
    Yun Guan
    Neuroscience Bulletin, 2019, 35 : 527 - 539
  • [45] Multi-session transcutaneous spinal cord stimulation prevents chloride homeostasis imbalance and the development of hyperreflexia after spinal cord injury in rat
    Malloy, Dillon C.
    Cote, Marie-Pascale
    EXPERIMENTAL NEUROLOGY, 2024, 376
  • [46] Spinal Cord Stimulation for Pain Treatment After Spinal Cord Injury
    Huang, Qian
    Duan, Wanru
    Sivanesan, Eellan
    Liu, Shuguang
    Yang, Fei
    Chen, Zhiyong
    Ford, Neil C.
    Chen, Xueming
    Guan, Yun
    NEUROSCIENCE BULLETIN, 2019, 35 (03) : 527 - 539
  • [47] Transcutaneous gas tensions in the sacrum during the acute phase of spinal cord injury spinal cord injury
    Bogie, K.M.
    Nuseibeh, I.
    Bader, D.L.
    Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 1992, 206 (01) : 1 - 6
  • [48] Biomarkers for recurrent pressure injury risk in persons with spinal cord injury
    Schwartz, Katie
    Henzel, M. Kristi
    Richmond, Mary Ann
    Zindle, Jennifer K.
    Seton, Jacinta M.
    Lemmer, David P.
    Alvarado, Nannette
    Bogie, Kath M.
    JOURNAL OF SPINAL CORD MEDICINE, 2020, 43 (05): : 696 - 703
  • [49] Mapping Spinal Cord Stimulation-Evoked Muscle Responses in Patients With Chronic Spinal Cord Injury
    Hoglund, Brandon K.
    Zurn, Claire A.
    Madden, Lauren R.
    Hoover, Caleb
    Slopsema, Julia P.
    Balser, David
    Parr, Ann
    Samadani, Uzma
    Johnson, Matthew D.
    Netoff, Theoden I.
    Darrow, David P.
    NEUROMODULATION, 2023, 26 (07): : 1371 - 1380
  • [50] CHRONIC EPIDURAL SPINAL CORD STIMULATION AS A POTENTIAL TREATMENT FOR SEXUAL DYSFUNCTION IN WOMEN WITH SPINAL CORD INJURY
    Bottorff, E.
    Shackleton, C.
    Krassioukov, A.
    Netoff, T.
    Darrow, D.
    JOURNAL OF SEXUAL MEDICINE, 2024, 21